
A Selective Defense for Mitigating Coordinated Call Attacks
Marcilio O. O. Lemos1, Yuri Gil Dantas2, Iguatemi E. Fonseca1,

Vivek Nigam1 and Gustavo Sampaio1

1Federal University of Paraı́ba, Brazil

2Technische Universität Darmstadt, Germany

{marcilio.cc.lemos,gbritosampaio}@gmail.com,

{iguatemi,vivek}@ci.ufpb.br,

dantas@mais.informatik.tu-darmstadt.de

Abstract. Telephony Denial of Service (TDoS) attack is a form of Denial of Ser-
vice (DoS) attack that targets telephone services, such as Voice over IP (VoIP),
not allowing legitimate users to make calls. This paper proposes a new selective
defense for mitigating a type of TDoS called Coordinated Call Attack where at-
tackers simply call to each other exhausting the target VoIP server’s resources
and denying service to legitimate users. Our defense builds on the defense SeVen
for mitigating Application Layer DDoS attacks. We implemented and integrated
SeVen in usual VoIP systems using the SIP protocol and carried out a number of
experiments: without SeVen, less than 15% of users can access the target VoIP
service, whereas with SeVen, around 90% of users can access the same service.

1. Introduction
Distributed Denial of Service (DDoS) attacks have been a great concern to network ad-
ministrators since the origins of the Internet targeting all sorts of services. Voice over IP
has been widely used for audio and video communications due to its low costs and ac-
ceptable quality. As such, it has been target of DDoS attacks such as VoIP amplification
attacks [30, 22] and the SIP flooding attack [30]. Telephony Denial of Service (TDoS) at-
tacks are DoS attacks that target telephone services, such as VoIP, not allowing legitimate
users to make calls. TDoS attacks have been reported targeting hospital systems [2, 7] and
systems for emergency lines (like the American 911 system) [6]. Moreover, according the
FBI, 200 TDoS attacks were identified only in 2013 [7].

Available defenses for DDoS targeting VoIP services, such as [27, 17, 29, 31],
are constructed to mitigate attacks by analysing traffic flows and whenever there is an
unusual increase of traffic, suitable mechanisms are placed, such as blocking IPs1. A
recent class of DDoS attacks, called Application-Layer DDoS Attacks (ADDoS), are able
to bypass such defense mechanisms because they are carried out by generating traffic that
is similar to usual client traffic. Examples of ADDoS attacks include the Slowloris [23],
POST [20] and Slowread [24] attacks exploiting the HTTP protocol, and the Coordinated
Call Attack [11] exploiting the SIP protocol used by VoIP applications.

The Coordinated Call Attack [11] exploits the fact that pairs of attackers, Alice
and Bob, can collude to exhaust the resources of the VoIP server. Assume that Alice and

1see also http://itsecurity.telelink.com/tdos-attacks/ accessed on March 2016

http://itsecurity.telelink.com/tdos-attacks/


Bob are valid registered users. This can be easily done for many VoIP services. The attack
goes by Alice simply calling Bob and trying to stay in the call as long as she can. Since
the server allocates resources for each call, by using enough pairs of attackers, they can
exhaust the resources of the server and deny service to legitimate clients. This is a simple,
but ingenious attack, as only a small number of attackers is needed generating a small
network traffic (when compared to SIP flooding attack for example), being, thus, hard for
network administrators to detect and counter-measure such attack.

Our recent work [16] proposed the use of selective strategies for mitigating
(HTTP) Application-Layer DDoS attacks in the form of the tool called SeVen. Our de-
fense mechanism is governed by probability functions that specify the chances of a request
to be dropped whenever the service is overloaded. We showed in our previous work that
by using simple uniform distributions, SeVen can be used against a number of attacks ex-
ploiting the HTTP protocols (Slowloris and POST). However, that work only considered
ADDoS attacks exploiting the HTTP protocol against web-servers.

This paper investigates the use of selective strategies for mitigating TDoS attacks,
in particular, the Coordinated Call Attack. Our contributions are three-fold:

1. A New Selective Strategy for VoIP Services: We propose a new selective strategy
suitable for VoIP services. While in our previous work [16], we used simple uniform
probabilities, this paper uses more sophisticated definitions for deciding which calls
that are going to be selected to continue and which should be dropped;

2. Integration of SeVen with VoIP Servers: We investigated how SeVen can be used
in conjunction with typical VoIP servers, in particular, Asterisk [1]. We imple-
mented our solution using SeVen as a proxy for VoIP server;

3. Experimental Results: Finally, we carried out a number of experiments showing
that our solution can mitigate Coordinated Call Attacks. When under attack and
without using our defense, we observed that only 15% of users could access the
VoIP service. All of these clients were able to complete their calls. When using
SeVen, we observed that around 90% of clients could access the VoIP service. Of
these, 63% were able to complete their calls. The remaining 27% were interrupted
by SeVen being able to stay using the VoIP service in average 60% of the intended
call duration.

We start in Section 2 explaining the SIP protocol used by VoIP services and the
Coordinated Call Attack. Section 3 introduces the new selective strategy used to mitigate
the Coordinated Call Attack. In Section 4, we describe the experimental set-up used to
validate our defense mechanism as well as the quality measures used. We also show
our main findings which validate the efficiency of our defense mechanism. Finally in
Section 5, we discuss related work and conclude pointing to future work.

2. VoIP and the Coordinated Call Attack

Nowadays the most widely used signaling protocol in VoIP communication is the Session
Initiation Protocol (SIP) [25]. Figure 1 depicts the messages that are exchanged during a
call. In the initiation phase, Alice, the caller, sends an INVITE message to the SIP Proxy,
such as Asterisk [1] server, with the details of Bob, the party Alice wants to talk with.
The proxy searches for Bob’s details (such as his IP) and sends an INVITE message to



INVITE

Alice SIP Proxy Bob

INVITE

TRYING

RINGING

RINGING

BYE

BYE

OKOK

Initiation

Communication

Termination

OK

OK

ACK

ACK

Figure 1. Session Initiation Protocol (SIP)

Time

Slots

Figure 2. Illustration of the Coordinated VoIP Attack. (Black) Circles represent
legitimate calls, while (red) squares represents an attacker call.

Bob with Alice’s identification.2 At the same time, the SIP Proxy sends Alice a TRYING
message indicating that it is checking whether Bob is available. If he is available, Alice
and Bob exchange through the proxy a number of messages (RINGING, OK, ACK) to
establish the connection. At this point, the communication phase starts when Alice and
Bob can talk or exchange data. When the call is terminated by one of the parties (in
Figure 1, Alice), then a BYE message is sent to the proxy which forwards it to Bob who
responds with an OK message acknowledging the end of the call.

2.1. Coordinated Call Attack
A pair of colluding attackers, A1 and A2, that are registered in the VoIP service,3 call each
other and stay in the call for as much time as they can. The attackers exchange with the
SIP server the same initiation messages as in a normal SIP session as shown in Figure 1.
Once the call is established, the attackers stay in the call for indefinite time. They may be
disconnected by some Timeout mechanism establishing (very large) time bounds on call
duration. During the time that A1 and A2 are communicating, they are using resources of

2In practice, Asterisk reformulates the data send by Alice according to its own user database adding
further information such as its own identification tags.

3Or alternatively two honest users that have been infected to be zombies by some attacker.



the server. As usual, VoIP servers have an upper-bound on the number of simultaneous
calls they can handle. By using enough colluding attackers, the target VoIP server will
reach its limit denying new (legitimate) calls to be established.

Figure 2 illustrates why this attack is so effective. The attacker can slowly occupy
the call slots available in the SIP Server. Since they stay indefinite time, once the slot is
occupied it is never made free (without a defense mechanism) and therefore eventually
the attacker will be using all slots not allowing legitimate clients to use the VoIP service.

An important difference of this attack to other DDoS on VoIP services, such as
SIP-flooding, is the fact that the attacker’s traffic is not significantly different to usual
legitimate traffic. Firstly, the attackers follow correctly the protocol sending the expected
messages as specified by the SIP protocol. Secondly, the attack does not have to generate
a large number of calls at a particular instance. It can slowly populate the VoIP resources
with traffic load, i.e., call rate, similar to client call rate. The overall traffic would corre-
spond to expected traffic load and therefore not activating any defense mechanism.

3. SeVen
Our defense, SeVen, uses a selective strategy [16]. In a nut-shell, whenever the applica-
tion is overloaded, that is, its capacity is full, and a new request R arrives, SeVen acts as
follows:

1. SeVen decides (using some probability distribution P1) whether the application
should process R or not;

2. If SeVen decides not to processR, then it simply returns a message to the requesting
user that the service is not available;

3. If SeVen decides to processR, then as the application is overloaded, it should decide
(using some probability distribution P2) which request currently being processed
should be dropped. This decision is governed by P2, a distribution probability which
may depend on the state of the existing request.

Intuitively, this strategy works because when the application is overloaded, it is
very likely that it is suffering a DDoS attack. Therefore, whenever a new request arrives
and SeVen decides to process it, the probability of dropping an attacker is much higher.
Figure 2 illustrates this situation: the vertical dashed lines indicate some moments when
the application is overloaded and new requests arrive. The number of square dots, repre-
senting attackers, is much greater than the number of circle dots, representing legitimate
clients, when the attack is being carried out. While without SeVen the application would
simply deny service to all requesting clients, SeVen allows new clients to be served.

The first main contribution of this paper is on the definition of the probability dis-
tributions P1 and P2, in particular, the probability P2. While in our previous work [16] P2

was uniform which was suitable for Web-Servers, we need a more elaborate distribution.
P2 will depend on (1) the status of the request and (2) on the duration of a call.

We consider two types of status for requests:
• WAITING: A request is WAITING if it did not yet completed the initiation phase of

the SIP protocol (see Figure 1). That is, it is still waiting for the responder to join
the call and start to communicate;
• INCALL: A request is INCALL if the initiation phase of the SIP protocol have been

completed and the initiator and the responder are already communicating (or simply



Chance to be Dropped

Duration

tM

pWAIT

pIN

Figure 3. Graph (not in scale) illustrating the behavior of SeVen according to the
status of a request and the duration of INCALL request. pWAIT is the factor for
dropping a WAITING request, while pIN the factor for dropping a INCALL request.

in a call).

Thus, any incoming INVITE request assumes the status of WAITING, and it can change
its status to INCALL once the initiation part of SIP is completed.

We assume here that it is preferable to a VoIP server, when overloaded, to drop
WAITING requests than INCALL requests that are communicating not for a very long
duration. In many cases, it is true that interrupting an existing call is considered to be
more damaging to server’s reputation than not allowing a user to start a new call. This
could also be modeled by configuring the probability distributions of SeVen accordingly.
Moreover, to determine whether a call is taking too long, we assume that the server knows
what is the average duration, tM , of calls.4

The chance of an INCALL request to be dropped increases exponentially. This
function was based on using a Poisson distribution5 once this has a duration of more than
tM . Figure 3 depicts roughly how the chance of dropping a call increases with the call
duration. The actual equation is of the form, where t is the call duration:

d(t) =


pWAIT if t = 0
pIN if 0 ≤ t ≤ tM
pWAIT + eαt/tM if t > tM

(1)

We apply this function to the roulette-wheel selection method [19] in order to pro-
duce the probability distribution P2 that decides which request currently being processed
should be dropped. This function is used because we think it is reasonable for many ap-
plications. Of course, there are many decision options for these probabilities which will
depend on the intended application. For instance, one could consider that the Poisson
distribution should begin only a period after tM , or that it should be another distribution,
etc. It will depend on the specific requirements of the defense.

Finally, we point out that we also formally specified this strategy in the computa-
tional tool Maude [13] and used advanced model checking techniques, namely Statistical
Model-Checking [21], to have a first impression of whether this defense would work or

4The value of tM can be obtained by the history of a VoIP provider’s usage.
5We used a Poisson distribution because such distributions are normally used for modeling telephone

calls arrival [12]



not. As our model checking results (which are detailed in another work [15]) were satis-
factory, we implemented the defense and carried out experiments, which will be detailed
in Section 4.

3.1. SeVen by Example

The formal specification of SeVen is detailed in our previous work [16]. We illustrate how
it works with an example referring the details of the mechanism to [16].

Assume for this example that the VoIP server can only handle 3 simultaneous
calls. Moreover that the average time of calls is tM = 5 (just for illustration) and that
currently, the server is processing two call requests identified as id1 and id2 as follows:

P0 = [〈id1, INCALL, 8〉, 〈id2,WAITING, 0〉]

where 〈id, st, dur〉 specifies that the call id has status st and dur is the duration of the
call, being 0 whenever st = WAITING. Thus, id1 is calling for 8 time units, while id2 is
still waiting for the responder.

Assume that a new request arrives, identified as id3. Since the server’s capacity
is not reached, it accepts this request updating the status of the server to the following
reaching its maximum capacity:

P1 = [〈id1, INCALL, 8〉, 〈id2,WAITING, 0〉, 〈id3,WAITING, 0〉]

Assume that one time unit passes and that the id2 completes the initiation phase. The
status of the server is updated to:

P2 = [〈id1, INCALL, 9〉, 〈id2, INCALL, 1〉, 〈id3,WAITING, 0〉]

Now consider that a new request id4 arrives. Since the server is in its maximum capacity,
SeVen should decide whether it processes id4 or not. SeVen throws a coin (according
to the probability distribution P1 which is not important for this paper. You can safely
assume a fair coin). If it returns 0, then it does not process id4; otherwise it does process
id4.

Assume that SeVen decides to process id4. SeVen now has to decide which one
of the requests currently being processed, id1, id2 or id3, should be dropped. It chooses
one using the probability distribution generated from function depicted in Figure 3. Thus,
id1 has a greater chance of being chosen than id2 and id3 because its call has a duration
greater than tM (9 > 5). Moreover, id3 has a greater chance of being chosen than id2 as
pIN < pWAITING.

Assume that SeVen decides to drop id1. The new status of the server will be:

P3 = [〈id2, INCALL, 1〉, 〈id3,WAITING, 0〉, 〈id4,WAITING, 0〉]

Finally, say that id2 finishes its call. The resulting server status will be:

P4 = [〈id3,WAITING, 0〉, 〈id4,WAITING, 0〉]

where the server is no longer overloaded.



Figure 4. Experiment Topology

In practice, the values for pIN, pWAIT, the capacity of the server and the tM will
depend in the application. Moreover, the duration of call would be measured in seconds
(or even milliseconds).

Remark: Other parameters besides call duration could be used in configuring the chances
to drop clients. Dantas’s Master thesis [14] details several other options, such as different
classes of users (e.g., Gold, Silver and Bronze), the type of connections, etc. Their use
will depend on the particular situation. We leave the task to incorporate other parameters
to future work.

4. Experimental Results

4.1. Set-Up

In our experiments, we used Asterisk version 13.6.0 which is a SIP server widely used by
small and mid size companies for implementing their VoIP services. We assume there are
honest users and malicious attackers which try to make the VoIP unavailable. Both the
traffic of the honest users and the attackers are emulated using the tool SIPp [5] version
3.4.1. SIPp generates calls which may be configured as the caller or the callee. Thus, in
our experiments, we used pairs of SIPp, one pair for generating the honest user calls and
the other pair for generating the attacker calls. Finally, we developed the SeVen proxy in
C++ which implements the selective strategy described in Section 3.1.

Figure 4 illustrates the topology of the experiments we carried out. To make a call,
the pairs of SIPp send messages to the SeVen proxy which on the other hand forwards
them to Asterisk. Similarly, any message generated by Asterisk is forward to the SeVen
proxy which then forwards them to the corresponding users. Therefore, SeVen is acting
as an Outbound Proxy for both Asterisk and the pairs of SIPp. For our experiments, it is
enough to use a single machine. We used a machine with configuration Intel(R) Core(TM)
i7-4510U CPU @ 2.00GHz and 8 GB de RAM.

Finally, we set the duration of the calls generated by SIPp as follows:
• Total Call Duration of Clients: Whenever we generate a new call, we generate

randomly with a uniform probability a natural number between [1, 2 × tM ]. Thus
legitimate user calls may at most take twice the average call duration. SIPp ends the
call when its corresponding call duration is reached;



• Call Duration of Attackers: Following the Coordinated Call Attack, we do not
limit the call duration of an attacker call. He call communicate for indefinite time.

Parameters We use the following parameters to configure our experiments:
• Average Call Duration (tM ) – We assume known what is the average duration of

calls. This can be determined in practice by analyzing the history of calls. We
assume in our experiments that tM = 5 minutes;
• Dropping Factor – We assume the following values for the dropping chance func-

tion (Eq 1):
– pIN = 2;
– pWAIT = 8;
– α = 1.89.

These values were chosen so that the probability of dropping increases in a reason-
able fashion after the call duration is greater than tM . Sample values are as follows,
recalling that tM = 5:

Call Duration (mins) Dropping Factor

6 12.37
8 17.31

10 27.84

That is, the chance of dropping a call with duration of 10 minutes is approximately
3 times greater than dropping a call whose status is WAITING (27.84/8). This is a
reasonable ratio. However, according to the specific application other values can be
set for pIN, pWAIT and α. Finally, the choice of setting pWAIT = 4× pIN was selected
so that the calls with duration less than tM have much less chance of being dropped
than the calls that are still waiting for the responder.
• SIP Sever Capacity (k) – This is the number of simultaneous calls the SIP server

can handle. We set k = 50 which is a realistic capacity for a small company allowing
100 users (2× 50) to use the service at the same time.
• Experiment Total Time (T ) – Each one of our experiments had a duration of 60

mins, that is, 12 times the average call of clients. With this duration, it was already
possible to witness the damage caused by the Coordinated Call Attack as well as the
efficiency of our solution for mitigating this attack.
• Traffic Rate (R) – Using a server with capacity of 50, we calculated using standard

techniques [10] what would be a typical traffic of such a server. It is R = 9.9 calls
per minute. In our experiments, we split this rate among clients and attackers. Recall
that the Coordinated Call Attack does not generate traffic different from the expected
traffic so that it can bypass usual defenses based on network traffic analysis. Thus,
the total traffic in our experiments is always less or equal than R.

Quality Measures For our experiments, we used the following three quality measures
for our calls:
• Complete Call: A call is complete whenever its status changed from WAITING to
INCALL and it is able to stay in status INCALL for its corresponding call duration.



That is, the caller was able to communicate with the responder for all the prescribed
duration;
• Incomplete Call: A call is incomplete whenever its status changed from WAITING

to INCALL, but it was not able to stay in status INCALL for its corresponding call
duration. That is, the caller was interrupted before completing the call;
• Unsuccessful Call: A call is unsuccessful if it did not even change its status from
WAITING to INCALL. That is, the caller did not even have the chance to speak with
the responder.

Intuitively, complete calls are better than incomplete calls which are better than
unsuccessful calls. In order to support this claim, we also computed the average duration
call of the incompleted calls, that is, the time that users in average where able to stay
communicating before they were interrupted by SeVen.

4.2. Experimental Results

We carried out a number of experiments analyzing the attack and the effectiveness of our
defense. Three types of experiments were carried out:
• Type 1: Attacking the Asterisk server without using SeVen to defend it;
• Type 2: Attacking the Asterisk server and using SeVen to defend it;
• Type 3: Not attacking the Asterisk sever but still using SeVen.

Figure 5 depicts the availability results for legitimate clients for each type of ex-
periment. In our experiments with attack, we varied the attacker call-rate from 3.3 calls
per minute until 6.6 calls per minute. The client call rate was adjusted in order to preserve
the total rate of 9.9 calls per minute which is a typical call rate for the Asterisk server as
detailed in Section 4.1. Thus for the scenario with an attacker call rate of 3.3 calls per
minute, the client call rate was 9.9 - 3.3 = 6.6 calls per minute, which corresponds to a
ratio of 2 client calls for each attacker call. Similarly, when the attacker call rate used
is 6.6 calls per minute, we generated 3.3 calls per minute for legitimate clients, which
corresponds to a ratio of 2 attacker calls for each client call.

When under attack and not running SeVen (Figure 5(a)), we observed that the ratio
of unsuccessful calls was very high (80-90% of total client calls). This means that these
clients were not even able to start a call. The remaining calls (10-20% of total client calls)
were all successful, that is, each one could stay using the VoIP service for the total time
assigned to them.

On the other hand, when under attack and using SeVen (Figure 5(b)), we observed
that clients had many more successful calls (60-70% of total client calls), while some (0-
10% of total client calls) were not able to even start the call. The remaining calls (20-30%
of total client calls) were interrupted while calling due to SeVen’s DDoS mitigation strat-
egy. Therefore, around 90% of the clients were able to use (even if some in an incomplete
fashion) the VoIP service.

Finally, we observed that SeVen did not affect the client success ratio when Aster-
isk is not under attack as depicted in Figure 5(c), where all client calls were successful.

In order to understand better the profile of the incomplete calls in the scenario with
attack and using SeVen, we measured the following ratio for each incomplete call: tD

tT
,

where tD is the duration call, that is, the time when the call started until it was interrupted,



(a) Client Success when under attack and not running SeVen.

(b) Client Success when under attack and running SeVen.

(c) Client Success when not under attack and running SeVen.

Figure 5. Availability Results

and tT is the intended total call duration time. Figure 6 depicts the average call duration
ratio of the incomplete calls. The average was around 60% for each experiment with
different attacker call rates. This means that the clients in incomplete calls still were able
to communicate for more than half of the corresponding duration of the call. This supports
our claim that incomplete calls are indeed much better than unsuccessful calls in which
clients are not even able to start the call.

Finally, in order to understand better the behavior of the Coordinated Call Attack
and in particular, how effective our defense is, we studied how many calls were occupied
by attackers over time. Figure 7 depicts the results for the case when the attacker call
rate is 4.95 calls per minute, that is, the same rate as the client call rate (9.9 - 4.95 =



Figure 6. Average Duration of Incomplete Calls

(a) Without using SeVen.

(b) Using SeVen.

Figure 7. Attacker Occupancy over time when Attacker Call rate is 4.95 calls per
minute.

4.95 calls per minute). The cases with other attacker call rates had similar results. We
observed that when not using SeVen (Figure 7(a)), the attacker is able to occupy all the
50 call positions after 17 minutes. After this point, no legitimate client is able to use the
VoIP service. This means that if we considered even longer experiments, the availability
of clients (Figure 5(a)) would tend to zero as the clients are only able to access the VoIP
service in the first 17 minutes of the experiment. Indeed, we carried out experiments first
initializing the attackers letting them occupy all available slots of the VoIP server and
only then initialized the clients. The result of this experiment was 100% of unsuccessful
calls.



On the other hand, with SeVen (Figure 7(b)), we observe that the attackers were
not able to occupy all positions of the VoIP server. After 8 minutes, the attackers were
able to occupy a bit more than 30 slots, leaving the remaining slots available to legitimate
clients. This remained so for the rest of the experiment. It demonstrates that the selective
strategy indeed works as intuitively described in Section 3.

5. Conclusions, Related and Future Work

This paper introduced a new selective strategy for mitigating the Coordinated Call Attack
on VoIP services. We implemented this defense and carried out a number of experiments
and analyzes using an off-the-shelf VoIP server (Asterisk) demonstrating the effectiveness
of our defense. Under an attack and using our defense, around 90% of legitimate clients
were able to access the VoIP services, 63% of which used the service until full satisfaction.
In contrast, without our defense, only 15% of clients had access to the VoIP service.

Most of the existing work [18, 28, 26, 27, 29, 31] on mitigating DoS attacks on
VoIP services focuses on Flooding attacks, such as SIP-Flooding attack. They analyze
the network traffic and whenever they observe an abrupt increase in the traffic load, they
activate their defenses. The network traffic is usually modeled using some statistical
approach, such as correlating the number of INVITE requests and the number of requests
that completed the SIP initiation phase [18] or using more complicated metrics such as
helling distance to monitor traffic probability distributions [28, 26, 27]. Other solutions
place a lower priority on INVITE messages, which are only processed when there are no
other types of request to be processed [29, 31].

As the Coordinated Call Attack emulates legitimate client traffic not causing an
unexpected sudden increase in traffic, all these defenses are not effective in mitigating
the Coordinated Call Attack. The few solutions we found in the literature for this type of
attack are commercial tools that act as a firewall which monitors all the call traffic and the
signaling [4, 9] or analyze audio samples [3] in order to differentiate the fraudulent calls
from the legitimate ones. Less sophisticated mechanisms [8] monitors all the incoming
requests and rejects those whose IPs do not belong to a list of trusted IPs. Clearly such
approaches does not work well when the attackers are malicious users who’s IPs are in the
trusted list and are not using automation to make the calls. In addition, these commercial
tools can be expensive for small businesses to purchase and maintain, and they do require
technical expertise for proper installation.

One main advantage of our proposed solution is that it is not tailored using many
specific assumptions on type of service. The only assumption used is a previous knowl-
edge of the average call duration, which can be easily inferred from the service call his-
tory. Moreover, our solution can be easily integrated with other mechanisms such as the
IP filtering approach used in [8].

We also point out that before carrying out the experiments in this paper, we for-
mally modeled the defense and the Coordinated Call Attack in the computational tool
Maude [13] and used statistical model-checking methods [21] to verify it using Monte
Carlo simulations. This is reported in another work [15].

There are many directions for future work. We will investigate how one can add
additional information, such as the request IP origin, call history of users, into account



to improve the precision of our defense. We are also investigating other attacks on VoIP
service that emulate legitimate clients, such as the prank call attack [6]. We are also
incorporating other optimizations in SeVen investigating ways to better integrate it with
Asterisk. Finally, we are also investigating how SeVen can be incorporated into existing
services such as those used by Fone@RNP.

Acknowledgments: The authors were partially funded by the RNP. Lemos, Nigam and
Fonseca were partially funded by CAPES and CNPq. Dantas was supported by the Hes-
sian excellence initiative LOEWE at the Center for Advanced Security Research Darm-
stadt (CASED).

References

[1] Asterisk private branch exchange. http://www.asterisk.org//. Accessed:
2015-27-09.

[2] Cyber threat bulletin: Boston hospital TDoS attack. http://voipsecurityblog.typepad.com/files/

cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf. Accessed: 2015-
27-09.

[3] Pindrop: Protecting your call centers against phone fraud social engineer-
ing. https://www.pindrop.com/wp-content/uploads/2016/01/
pindrop_overview_whitepaper_fi_20141121_v2.pdf. Accessed:
2015-27-09.

[4] Securelogix: Telephony denial of service (tdos) solu-
tions. http://www.securelogix.com/solutions/
telephony-denial-of-service-TDoS.html. Accessed: 2015-27-
09.

[5] Sipp: Sip traffic generator. http://sipp.sourceforge.net. Accessed: 2015-27-
09.

[6] Situational advisory: Recent telephony denial of services (tdos) attacks.
http://voipsecurityblog.typepad.com/files/ky-fusion_
tdos_3-29-13-2.pdf/. Accessed: 2015-27-09.

[7] TDoS- extortionists jam phone lines of public services in-
cluding hospitals. https://nakedsecurity.sophos.com/pt/2014/01/22/

tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/. Accessed: 2015-27-
09.

[8] Tdos attack mitigation. http://www.cisco.com/c/en/us/td/docs/
ios-xml/ios/voice/cube_proto/configuration/15-mt/
cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.
pdf. Accessed: 2015-27-09.

[9] Transnexus nexoss. http://transnexus.com/
telephony-denial-service-attacks/. Accessed: 2015-27-09.

[10] Designing Optimal Voice Networks for Businesses, Government, and Telephone Compa-
nies. 1980.

[11] The Surging Threat of Telephony Denial of Service Attacks, (accessed Setember
28, 2015). http://voipsecurityblog.typepad.com/files/tdos_
paper_4-11-13.pdf.

http://www.asterisk.org//
http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf
http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf
https://www.pindrop.com/wp-content/uploads/2016/01/pindrop_overview_whitepaper_fi_20141121_v2.pdf
https://www.pindrop.com/wp-content/uploads/2016/01/pindrop_overview_whitepaper_fi_20141121_v2.pdf
http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://sipp.sourceforge.net
http://voipsecurityblog.typepad.com/files/ky-fusion_tdos_3-29-13-2.pdf/
http://voipsecurityblog.typepad.com/files/ky-fusion_tdos_3-29-13-2.pdf/
https://nakedsecurity.sophos.com/pt/2014/01/22/tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/
https://nakedsecurity.sophos.com/pt/2014/01/22/tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://transnexus.com/telephony-denial-service-attacks/
http://transnexus.com/telephony-denial-service-attacks/
http://voipsecurityblog.typepad.com/files/tdos_paper_4-11-13.pdf
http://voipsecurityblog.typepad.com/files/tdos_paper_4-11-13.pdf


[12] Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng Shen, Sergey
Zeltyn, and Linda Zhao. The title of the work. Statistical Analysis of a Telephone
Call Center: A Queueing Science Perspective, (100):36–50, 2002.

[13] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José
Meseguer, and Carolyn Talcott. All About Maude: A High-Performance Logical
Framework, volume 4350 of LNCS. Springer, 2007.

[14] Yuri Gil Dantas. Estratégias para tratamento de ataques de negação de serviço na camada
de aplicação em redes ip. Master Thesis in Portuguese, 2014.

[15] Yuri Gil Dantas, Marcilio O. O. Lemos, Iguatemi Fonseca, and Vivek Nigam. Formal
specification and verification of a selective defense for tdos attacks. In 11th Interna-
tional Workshop on Rewriting Logic and its Applications (WRLA), 2016.

[16] Yuri Gil Dantas, Vivek Nigam, and Iguatemi E. Fonseca. A selective defense for applica-
tion layer ddos attacks. In IEEE JISIC 2014, pages 75–82, 2014.

[17] S. Ehlert, Chengjian Wang, T. Magedanz, and D. Sisalem. Specification-based denial-of-
service detection for sip voice-over-ip networks. In ICIMP ’08, 2008.

[18] Do-Yoon Ha, Hwan-Kuk Kim, Kyoung-Hee Ko, Chang-Yong Lee, Jeong-Wook Kim, and
Hyun-Cheol Jeong. Design and implementation of sip-aware ddos attack detection
system. In ICIS ’09, pages 1167–1171, New York, NY, USA, 2009. ACM.

[19] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic accep-
tance. CoRR, abs/1109.3627, 2011.

[20] r-u-dead yet. https://code.google.com/p/r-u-dead-yet/. 2013.
[21] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of

stochastic systems. In Kousha Etessami and Sriram K. Rajamani, editors, CAV,
volume 3576 of Lecture Notes in Computer Science, pages 266–280. Springer, 2005.

[22] Ravinder Shankesi, Musab AlTurki, Ralf Sasse, Carl A. Gunter, and José Meseguer.
Model-checking DoS amplification for VoIP session initiation. In ESORICS, pages
390–405, 2009.

[23] slowloris. http://ha.ckers.org/slowloris/. 2013.
[24] slowread. https://code.google.com/p/slowhttptest/. 2013.
[25] J. Stanek and L. Kencl. Sipp-dd: Sip ddos flood-attack simulation tool. In Computer

Communications and Networks (ICCCN), 2011 Proceedings of 20th International
Conference on, pages 1–7, July 2011.

[26] Jin Tang, Yu Cheng, and Yong Hao. Detection and prevention of SIP flooding attacks in
voice over IP networks. In INFOCOM, 2012 Proceedings IEEE, pages 1161–1169,
March 2012.

[27] Jin Tang, Yu Cheng, Yong Hao, and Wei Song. SIP flooding attack detection with a multi-
dimensional sketch design. Dependable and Secure Computing, IEEE Transactions
on, 11(6):582–595, Nov 2014.

[28] Jin Tang, Yu Cheng, and Chi Zhou. Sketch-based sip flooding detection using hellinger
distance. In Global Telecommunications Conference, 2009. GLOBECOM 2009.
IEEE, pages 1–6, Nov 2009.

[29] Xiao-Yu Wan, Zhang Li, and Zi-Fu Fan. A SIP dos flooding attack defense mechanism
based on priority class queue. In WCNIS 2010, pages 428–431, June 2010.

[30] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks. IEEE Communica-
tions Surveys and Tutorials, 15(4):2046–2069, 2013.

https://code.google.com/p/r-u-dead-yet/
http://ha.ckers.org/slowloris/
https://code.google.com/p/slowhttptest/


[31] Fan Zi-Fu, Yang Jun-Rong, and Wan Xiao-Yu. A SIP dos flooding attack defense mech-
anism based on custom weighted fair queue scheduling. In ICMT 2010, pages 1–4,
2010.


	Introduction
	VoIP and the Coordinated Call Attack
	Coordinated Call Attack

	SeVen
	SeVen by Example

	Experimental Results
	Set-Up
	Experimental Results

	Conclusions, Related and Future Work

