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Abstract. Telephony Denial of Service (TDoS) attacks target telephony
services, such as Voice over IP, not allowing legitimate users to make calls.
There are few defenses that attempt to mitigate TDoS attacks, most of
them using IP filtering, with limited applicability. In our recent work, we
proposed to use selective strategies for mitigating HTTP Application-
Layer DDoS Attacks demonstrating their effectiveness in mitigating dif-
ferent types of attacks. This paper demonstrates that selective strategies
can also be successfully used to mitigate TDoS attacks, in particular,
two attacks: the Coordinated Call Attack and the Prank Call attack. We
formalize a novel selective strategy for mitigating these attacks in the
computational tool Maude and verify these defenses using the statisti-
cal model checker PVeStA. When compared to our experimental results
(reported elsewhere), the results obtained by using formal methods were
very similar. This demonstrate that formal methods is a powerful tool for
specifying defenses for mitigating Distributed Denial of Service attacks
allowing to increase our confidence on the proposed defense before actual
implementation.

1 Introduction

Telephony Denial of Service (TDoS) attacks is a type of Denial of Service (DoS)
attack that target telephony services, such as Voice over IP (VoIP). With the
increase in the popularity of VoIP services, we have witnessed an increase in
TDoS attacks being used to target hospital VoIP systems [1,2] and systems for
emergency lines (like the American 911 system) [3]. Moreover, according the
FBI, 200 TDoS attacks have identified only in 2013 [2].

This paper investigates the use of selective defenses [4] for mitigating two
common TDoS attacks: The Coordinated Call [5] and the Prank Call [6] attacks:

The Coordinated Call attack [5] exploits the fact that pairs of attackers, Alice
and Bob, can collude to exhaust the resources of the VoIP server. Assume that
Alice and Bob are valid registered users.! The attack goes by Alice simply calling

! This can be easily done for many VoIP services.



Bob and trying to stay in the call as long as she can. Since the server allocates
resources for each call, by using a great number of pairs of attackers, one can
exhaust the resources of the server and denying service to honest participants.
This is a simple, but ingenious attack, as only a small number of attackers
is needed generating a small network traffic (when compared to SIP flooding
attack for example). Thus it is hard for the network administrator to detect and
counter-measure such attack.

The Prank Call attack [6] is similar to the usual flooding attack [7] denying
service by overloading the target resources. It has been carried out to shutdown
essential public services, such as the US emergency number (911) and hospital
lines. The attack follows by a large number of attackers (or their bots) initiating
calls to the target call-center. This causes that many, if not all, telephones in the
center to ring. Once the attendant picks up the phone, he can normally notice
that this is fake call and puts down the phone. However, since the number of
calls is very large, the phone rings again, not allowing legitimate clients to be
served.

Formal methods and, in particular, rewriting logic can help developers to
design defenses for mitigating DDoS attacks. In our previous work [4] we used
selective strategies in the form of the tool SeVen for mitigating HTTP Low-Rate
Application-Layer DDoS attacks targetting web-servers. We formalized different
attack scenarios in Maude and since our strategies are constructed over some
probability functions, we used statistical model checking [8], namely PVeStA [9],
to validate our defense. Due to our reasonable preliminary results, we imple-
mented SeVen and carried out experiments over the network obtaining similar
results to the ones obtained using formal methods. It took us only & person
months to obtain our results using formal methods, while it took us 24 person
months to obtain our first experimental results. Although we strongly believe
that systems should also be validated by means of experiments, the confidence
acquired from our formal analysis was invaluable for the success of this project.?

This paper continues our general goal of using selective strategies for miti-
gating DoS attacks, in particular, here for mitigating TDoS attacks. We followed
the same methodology as before, first formalizing our defense, the Coordinated
Call and the Prank Call attacks in Maude and using PVeStA to validate our
defense’s effectiveness. While this paper explains the formal model used, in an-
other technical report [10], we detail our initial experimental results on miti-
gating the Coordinated Call attack using SeVen to defend VoIP servers. The
results obtained by using our formal model and our experimental results were
very similar.

This paper is organized as follows. Section 2 we review Session Initiation
Protocol (SIP) used for initiating a VoIP call and also explain two different
TDoS attacks: Coordinated Call and Prank Call attacks. Section 3 explains how

2 Notice that although our experiments on the network were controlled experiments,
they used off-the-shelf tools, such as Apache web-servers, which implement a number
of optimizations, and our experiments suffered from interferences that cannot be
controlled, such as network latency.
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Fig. 1. Exchange of messages between the server and two users (Alice and Bob) during
a normal execution of the SIP protocol.

SeVen works, while Section 4 describes its formalization in Maude. In Section 5,
we explain our simulation results including our main assumptions, results and
discussion of the results obtained. We comment in Section 6 related and future
work. Finally, the implementation used to carry out our simulations is available
for download at [11].

2 VoIP Protocols and DDoS Attacks

We now review the Session Initiation Protocol [12], which is one of the main
protocols used to establish Voice over IP (VoIP) connections. Figure 1 shows the
message exchanges performed to establish a connection between two registered
users, Alice and Bob, where Alice tries to initiate a conversation with Bob. It
also contains the messages exchanged to terminate the connection.

For initiating a call, Alice sends an INVITE message to the SIP server in-
forming that she wants to call Bob. If Bob or Alice is not registered as valid
users, the server sends a reject message to Alice. Otherwise, the server sends
an INVITE message to Bob.? At the same time, the server sends a TRYING
message to Alice informing her the server is waiting for Bob’s response to Alice’s
invitation. Bob might reject the request, in which case the server informs Alice
(not shown in the Figure), or Bob can accept the call by sending the message
RINGING. Finally, the server sends the message RINGING to Alice and the
parties exchange OK and ACK messages.

At this point, the communication is established and Alice and Bob should
be able to communicate as long as they need/want. (This is represented by the
three ellipses in Figure 1.) The call is then terminated once one of the parties
(Alice) sends a BYE message to the server. The server then sends a BYE message
to the other party (Bob), which then answers with the message OK, which is
forwarded to Alice, and the connection is terminated.

3 In fact, we omit some steps carried out by the server to find Bob in the network.
This step can lead to DDoS amplification attacks [13] for which known solutions
exists. Such amplification attacks are not, however, the main topic of this paper.



Many attacks have exploited SIP to deny the VoIP service. We detail two
different attacks to the SIP protocols. The first one is the Coordinated Call
attack and the second one is the Prank Call attack.

Coordinated VoIP Attack A pair of colluding attackers, A; and As, that are
registered in the VoIP service,* call each other and stay in the call for as much
time as they can. Once the call is established, the attackers stay in the call
for indefinite time. They might be disconnected by some Timeout mechanism
establishing some time bounds on the amount of time that two users might call.
During the time that A; and A, are communicating, they are using resources
of the server. If many pairs of attackers collude, then the resources of the server
can be quickly exhausted. This attack is hard to detect using network analyzers
because the traffic generated by attackers is similar to the traffic generated by
legitimate clients. The attackers follows correctly the SIP protocol.

Our own experiments [10] replicating this attack show its effectiveness reduc-
ing the availability of the VoIP service to less than 15% of legitimate users.

Prank Call Attack The Prank Call attack is similar to a flooding attack [7] in that
the attackers send a large number of requests targeting essential public resources
services, such as the American 911 service. The attacker launches a high volume
of calls in order to flood the target VoIP service, reducing the availability to
legitimate users. Usually a particular call from the Prank Call attack does not
take long, because the callee hangs up the call when he realizes that is a prank
call. Prank Call attacks are difficult to track and investigate because the calls
are classified as anonymous, hence using traditional traffic analysis tools might
not be an efficient approach to mitigate such attacks.

3 SeVen

We proposed recently [4] a new defense mechanism, called SeVen, for mitigating
Application-Layer DDoS attacks (ADDoS) using selective strategies. An appli-
cation using SeVen does not immediately process incoming messages, but waits
for a period of time, Tg, called a round. During a round, SeVen accumulates
messages received in an internal buffer k. If the number of messages accumu-
lated reaches the maximum capacity of the service being protected and a new
incoming request R arrives, SeVen behaves as follows:

1. SeVen decides whether process R or not based on a probability P;. P; is
defined using the variable PMod following [14]:

Rk
k + PMod

4 Or alternatively two honest users that have been infected to be zombies by some
attacker.



At the beginning of the round, we set the variable PMod = 0. PMod is incre-
mented whenever the application’s capacity is exhausted and a new incoming
request arrives reducing thus the probability of new incoming request being
selected by SeVen during a round.

2. If SeVen decides to process R, then as the application is overloaded, it should
decide which request currently being processed should be dropped. This
decision is governed by P», a distribution probability which might depend on
the state of the existing request.

3. Otherwise, SeVen simply drops the request R without affecting the requests
currently being processed and sends a message to the requesting user in-
forming that the service is temporally unavailable;

At the end of the round, SeVen processes the requests that are in its internal
buffer (surviving the selective strategy) sending them to the application.

The intuition of why such a defense works is because whenever a system
is overloaded, it is very likely that it is suffering a DoS attack, which means
that it is very likely that an attacker request is occupying the resources of the
service. Therefore, the probability of dropping an attacker’s request is higher
than the probability of dropping an honest request. Thus, even under severe
attack of multiple attackers, an application running SeVen can maintain fair
levels of availability.

There is, however, much space for specifying these probability distributions
governing SeVen. In [4], we showed that by using simple uniform distributions for
dropping existing requests, SeVen can be used to mitigate a number of ADDoS
attacks using the HTTP protocol, such as the Slowloris and HTTP POST attacks
even in the presence of a large number of attackers.

For mitigating both Prank Call and Coordinated Call attacks described in
Section 2, we set the probability P» to depend on (1) the status of the call and
(2) on the duration of a call. We consider two types of call status:

— WAITING: A call is WAITING if it has already sent an INVITE message,
but it is still waiting for the responder to join the call, that is, it has not
completed the initiation part of the SIP protocol;

— INCALL: A call is INCALL if the messages of initiation part of SIP have been
completed and initiator and the responder are already communicating (or
simply in a call).

Thus, any incoming INVITE requests assume the status of WAITING, and these
can change its status to INCALL once the initiation part of SIP is completed.
We assume here that it is preferable to a VoIP server, when overloaded, to
drop WAITING requests than INCALL requests that are communicating not for a
very long duration. In many cases, it is true that interrupting an existing call is
considered to be more damaging to server’s reputation than not allowing a user
to start a new call. This could also be modeled by configuring the probability
distributions of SeVen accordingly. To determine whether a call is taking too



long, we assume that the server knows what is the average duration, t,;, of
calls.’

Chance to be Dropped
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Fig. 2. Graph (not in scale) illustrating the behavior of SeVen according to the status
of a call and its duration. pw arr is the probability of dropping a WAITING call, while
prn the probability of dropping a INCALL call.

The probability of an INCALL request increase using a Poisson distribution®
once this has a duration of more than ¢;. Figure 2 depicts roughly the probability
distribution used to drop requests. The actual function d (for drop factor) is of
the form, where ¢ is the call duration:

DPWAIT ift=0
d(t) = PIN if 0 S t S tM (1)
pwarr + e/ i ¢ > 1y,

We use this probability distribution as an illustration of how SeVen can be
used for mitigating VoIP DDoS attacks. Of course, there are many decision
options for these probabilities which will depend on the intended application.
For instance, one could consider that the Poisson distribution should begin only
a period after ¢y, or that it should be another distribution, etc. It will depend on
the specific requirements of the defense. As our results in Section 5 demonstrate,
the values chosen are good enough for the VoIP attacks we consider.

We also have developed SeVen as a proxy in C+-+ which implements the
strategy explained above, e.g., using the drop function 1, Poisson distribution
and so on. The measures and results (which can be found in another submis-
sion [10]) were very similar to the ones detailed in Section 5. Such results confirm
the success of our formal model proposed here.

3.1 Sample Execution

Consider the following buffer, B;, at the beginning of a round and assume that
k = 3, PMod = 0, the initial time is 9 and the average call duration is tpy = 5
time units:

By = [(id1, WAITING, undef), (ida, INCALL, 0.5)]

® The value of ts can be obtained by the history of a VoIP provider’s usage.
5 We used a Poisson distribution because such distributions are normally used for
modeling telephone calls arrival.



(id, st,tm) specifies that the call id has status st and the call started at time
tm where tm is undef whenever st = WAITING. This buffer specifies that the
id; is waiting the responding party to answer (with a RINGING message) his
invitation request and that ids is currently in a call. This means that ids is
calling already for way more than the expected average.

Assume that a message (id;, RINGING) at time 9.5 arrives specifying that
the responder of the request id; answered the call. The buffer is updated to the
following:

By = [(idy,INCALL,9.5), (id2, INCALL, 0.5)]

Then the message (ids, INVITE) arrives. Since the buffer is not yet full,
a new request is inserted in the buffer and the message TRYING is sent to
the requesting user. Notice that the RINGING message is not yet sent to the
responding user. The buffer changes to:

Bs = [(idy, INCALL, 9.5), (ids, INCALL, 0.5), (ids, WAITING, undef)]

Suppose now that another message m; = (idy, INVITE) arrives at time 10.5.
As the buffer is now full, it sets PMod to 1 and the application has to decide
whether it will keep m;. SeVen generates a random number in the interval [0,1]
using uniform distribution. Say that this number is less than (3/3 + 1), which
means that it will select to process m;. However, it has to drop some existing
request. The probabilities of dropping one the request in the buffer are as follows
(see Figure 2):

— id; has probability pjy to be dropped because it is calling for a duration less
than tp;: 10.5 — 9.5 < 5;

— ids has a much higher probability to be dropped because it is calling for
twice tpr: 10.5 — 0.5 = 2 X 9;

— id3 has probability pwaiT to be dropped because it has WAITING status.

Suppose that the application decides to drop ids, which means that the call is
interrupted by the application. The resulting buffer is:

By = [(id1, INCALL, 9.5), (ids, WAITING, undef), (ids, WAITING, undef)]

Assume that now the round time is elapsed. The application sends a RINGING
message to the responder of the requests ids and idy.

4 Formal Specification

Our specification follows [4,15,16] specifying the attack scenarios using the Actor
Model where attackers, clients, and server send and receive messages. These
messages are stored in a scheduler that maintains a queue of messages. The
attackers do not take control over the channel. Instead they share a channel
with clients.

We formalize all actors in the computational system Maude and carry out
simulations by using the statistical model checker PVeStA. For sake of simplicity,



we considered the server and SeVen as one actor, which means that SeVen is
also able to operate as a normal SIP Server, e.g., processing and establishing
call connections. Such decision does not affect the analysis of our results, which
are similar to the ones of our experiments over the network [10]. In the following,
we describe our Maude specification.”

eq initState =
<name: server | req-cnt: 0.0 , b-set: [0 | none], none >
<name: client-generate | server: server, cnt: O , none >
<name: attacker-generate | server: server, cnt: O , none >
{initActor, (attacker-generate <- spawn )}
{initActor, (client-generate <- spawn )}
{Ts, server <- ROUND}

The equation for initState specifies the initial state of our model, which
contains three actors, an attacker generator, a client generation and SeVen. Each
actor has an ID and a set of attributes. For example, SeVen is called server with
attributes req-cnt storing the value of PMod and b-set the internal buffer with
the current call connections. The attributes cnt in the other two actors stores
how many clients and attackers have been created.

Finally, we also formalize the message configuration between actors that are
going to be added in our scheduler. Each message configuration has the pa-
rameters delivery time and the message itself. For instance, we use the same
initActor delivery time to initialize both actors clients and attackers with a
message spawn. Besides that, we also create a periodically ROUND message to
control the SeVen’s round explained in Section 3, which is scheduled to be sent
after Ts time units.

The equations for generating both clients and attackers are omitted here.
Instead, we show their main rewrite rules. The clients have an attribute status
specifying their call state. Its status is none before sending an INVITE message
to the server which happens when it receives a message pool from the equation
generating clients® as specified by the following rewrite rule:

rl [CLIENT-RECEIVE-POOL]
<name: c(i) | server: Ser, status: none, AS >
{c(i) <- poll}
=>
<name: c(i) | server: Ser , status: invite, AS >
{ gt + delay, (Ser <- INVITE(c(i)))} .

The following rewrite rule specifies the behavior of a client upon receiving a
RINGING message from the server. It changes the client’s state from invite to

" For the sake of presentation, we simplified here some aspects such as the use of the
scheduler appearing in the complete model which can be found in [11].

8 Note that there is a value delay inserted when a message is sent in order to have a
more realistic model.



connected and generates a message BYE, scheduled to be sent after some time
in the interval ]0, tMedio]. This means that all legitimate clients do not overpass
the average time of the duration of calls. We omit the rule specifying when client
receives a drop message.

rl [CLIENT-RECEIVE-RINGING]
<name: c(i) | server: Ser, status: invite, AS >
{c(i) <- RINGING}
=>
<name: c(i) | server: Ser , status: connected, AS >
{ gt + randomNumber(0,tMedio), (Ser <- BYE(c(i)))}

The rewrite rules for the attackers are similar to the client rules. The only
difference is that no BYE message is generated, thus, specifying the Coordinated
Call attack where attackers attempt to stay in the call for indefinite time. We
elide these rules.

crl [SeVen-RECEIVE-INVITE]
<name: Ser | req-cnt: pmod , b-set: [lenB | B], AS >
{Ser <- INVITE(Actor)}
=> if (float(lenB) >= floor(lenBufSeVen)) then
if pl then ConfAcc {gt, Actor <- TRYING} {gt, ActorDr <- poll}
else ConfRej {gt + delay , Actor <- poll}
fi
else ConfAcc2 {gt + delay, Actor <- TRYING}
fi
if pl := sampleBerWithP(accept-prob(pmod))
/\ { ActorDr, bufDr } := remUser(altPBuf(B, gt), sampleUniWithInt(altPBufLen(B, gt)))
/\ nBuf := add([lenB + (- 1) | bufDr], < Actor gt INVITE >)
/\ ConfAcc := <name: Ser | req-cnt: (pmod + 1.0), b-set: nBuf , AS >
/\ ConfRej := <name: Ser | req-cnt: (pmod + 1.0), b-set: [lenB | B], AS >
/\ b-setNu := add( [lenB | B], < Actor gt INVITE > )
/\ ConfAcc2 := <name: Ser | req-cnt: pmod , b-set: b-setNu, AS > .

rl [SeVen-APP-ROUND]
<name: Ser | req-cnt: pmod , b-set: [lenB | B], AS >
{Ser <- ROUND}

<name: Ser | req-cnt: 0.0, b-set: [lenB | B], AS >
{gt, reply(Ser, B, gt)} {gt + Ts, Ser <- ROUND} .

Fig. 3. Rewrite rules specifying SeVen’s selective strategy.

Figure 3 depicts the rules implementing SeVen’s strategy. For each INVITE
message received by some actor Actor, the rule SeVen-RECEIVE-INVITE checks
whether the buffer of the server reached its maximum. If not, then the incoming
request is added to the server’s buffer (ConfAcc2) and a message TRYING to the
corresponding actor is created. Otherwise, SeVen throws a coin (p1) to decide



whether the incoming request will be processed using pmod. If SeVen decides to
process the incoming request, then some request being processed (the one sent by
ActorDr) is swapped with the new incoming request resulting in the buffer nBuf
and pmod gets incremented, resulting in the configuration ConfAcc. Moreover,
a poll message to ActorDr and a TRYING to Actor are created. Otherwise,
the incoming request is rejected and pmod is incremented without affecting the
server’s buffer resulting in the configuration ConfRej. A poll message to Actor
is also created.

The rule SeVen-APP-ROUND specifies that when the round finishes, all surviv-
ing requests in the server’s buffer are answered, where a new round starts and
pmod is re-set.

5 Simulation Results

We detail our simulation results obtained from our formal specification using
the statistical model checker PVeStA [9]. Our simulations are parametric in the
following values:

— Average time of a call — ty;: This is the assumed average time of the of calls
of honest users. We assume tj; = 5 time units;

— Probability distribution parameters (Func 1) — piy, pwarr and a: These are
the constants used to configure the distribution probability for dropping
requests as shown in Figure 2;

— SeVen Round Time — tg: This is the time that SeVen waits accumulating
requests, as described in Section 3. In our simulations, we use 0.4 time units.

— Size of Buffer — k: This is the upper-bound on the size of B, denoting the
processing capacity of the application. k = 24;

— Number of calls among honest participants (countHonest) and among col-
luding attackers (count Attacker). In all our simulations, we fixed the number
of clients to countHonest = 24 requests. Whenever we create an honest re-
quest, we specify how long the users want to talk, i.e., have the INCALL
status;

— Total time of the simulation - total: This is the total time of the simulation
using PVeStA. We used in our simulations total equal to 40 time units,
similar to the time used in [15];

— Delay of the Network: We also assumed a delay of 0.1 time units of message
in the network;

— Degree of confidence for the simulation: Our simulations were carried out
with a degree of confidence of 99% (see [8,17] for more details on probabilistic
model checking).

Quality Measures In our simulation, we use novel quality measures specific for
VoIP services. These are specified by expressions of the QuaTEx quantitative,
probabilistic temporal logic defined in [17]. We perform statistical model check-
ing of our defense in the sense of [8]: once a QuaTEx formula and desired degree



of confidence are specified, a sufficiently large number of Monte Carlo simula-
tions are carried out allowing for the verification of the QuaTEx formula. The
Monte Carlo simulations are carried out by the computational tool Maude [18]
and the statistical model checking is carried out by PVeStA.

The QuaTEx formulas, i.e., the quality measures, that we use in our simu-
lations are defined below. The operator () is a temporal modality that specifies
the advancement of the global time to the time of the next event (see [17] for
more details).

— Complete: How many honest calls were able to stay in the INCALL status
for the expected duration.

complete(total) = if time > total then % else Ocomplete(total)

where countComplete is a counter that is incremented whenever an honest
call is completed.

— Incomplete: How many honest calls were able to have the INCALL status but
were dropped before completing the call, i.e. not staying in INCALL status
for the expected duration;

countIncomplete

incomplete(total) = if time > total then <2l

else Qincomplete(total)

where countInComplete = countIncall — countComplete and countIncall is
a counter that is incremented whenever an honest calls changes from status
WAITING to INCALL.

— Unsuccessful: How many honest calls were not even able to reach the INCALL
status. That is, how many calls were not even able to start talking between
each other.

countUnsuccess
countHonest

unsuccess ful(total) = if time > total then
where countUnsuccess ful = countHonest — countIncall.

— The average of clients incomplete calls: We also measure how many percent
in average legitimate clients were able to talk in an incomplete call.

avgInCall(total) = if time > total then toi‘;i‘}gg&%:g‘giu else QavgInCall(total)
where totalTimeInCall is the sum of how many percent of time clients were

able to talk before being interrupted and the totalIncompleteCall is the total

of clients the were not able to finish their call as explained in Incomplete.

We consider that an honest request that was completed has a better perfor-
mance than an honest request that was interrupted in the middle of a call which,
on the other hand, has a better performance than an honest request that did
not even succeed in starting a call, i.e., never reached the INCALL status.

else Qunsuccess ful(total)
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Fig. 4. Simulation Results for when the application suffers a Coordinated Call Attack.

5.1 Coordinated Call Attack

Figure 4 contains our main results for the scenarios where the application is under
the Coordinated Call attack discussed in Section 2. We considered scenarios
where the application is using SeVen (Figure 4(a)) and not using any defense
mechanism (Figure 4(b)).

Figure 4(a) shows that the application maintains great levels of availability
when using SeVen. The Complete calls reduce from 95% to 81% of the legitimate
calls when the number of attackers increase. The difference is distributed between
Incomplete and Unsuccessful calls, where the former is around 13% and the
latter is around 5% of the legitimate calls. On the other hand, when SeVen is
not running, in all simulations, most legitimate users are not able to start a call:
When the number of attackers increase, the rate of Unsuccessful call increase
from 55% to 75% and the rate of Successful call decrease from 45% to 25%,
which means that when SeVen is running, there is an increase of availability by
a factor of 3.

Moreover, the average duration of incomplete calls (Figure 4(c)) stayed around
70%, that is, in average, a call that was dropped before completing its duration
was able to stay communicating for around 70% of the intended time.

Comparison with our Ezperimental Results We implemented [10] the Coordi-
nated Call attack and SeVen as described here. Our experimental results were
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Fig. 5. Simulation Results for when the application suffers Prank Call attack.

very similar to the ones we obtained here. In particular, when not running SeVen,
we observed very high levels of Unsuccessful calls (85% of legitimate calls), low
levels of Complete calls (15% of legitimate calls) and no Incomplete calls. These
results are very similar to the ones in Figure 4(b). When running SeVen, our
experiments showed a high rate of Successful calls (65% of legitimate calls), a
low rate of Incomplete calls (25% of legitimate calls) and very low rate of Unsuc-
cessful calls (10% of legitimate calls). These results are very similar to the ones
in Figure 4(a). Finally, we also measured the average duration of Incomplete
calls with an average of 60% of total call duration being very close to the results
in Figure 4(c).

These results support our claim that Formal Methods can be used for propos-
ing novel selective defenses for mitigating DDoS attacks. We leave to future work
the comparison of formal methods results with experimental results for other at-
tacks such as the Prank Call attack.

5.2 Prank Call Attack

Figure 5 shows the results obtained when the application is under a Prank Call
attack. We observe that when SeVen is running, the application maintains fair
levels of availability. Whereas without SeVen the number of calls that have been
completed drops to around 28% of legitimate calls, it drops to 53% when SeVen
is running, which means an improve of availability by a factor of almost 2. More-
over, the number of calls that is not even able to reach an INCALL status, the



Unsuccessful calls, only increases more sharply to 21% in the presence of 550 at-
tackers when using SeVen, while it increases considerably when not using SeVen
to around 71%. Finally, the average duration of Incomplete calls (Figure 5(c))
remains at around 70% of their intended duration.

These results provide us with strong evidence that SeVen can be used to
mitigate the Prank Call attack. We are currently implementing the machinery
to carry out experiments on the network.

6 Related and Future Work

This paper formalized a new selective defense to mitigating Coordinated Call
and Prank Call attacks. We have shown that using state-dependent probability
distributions for selecting which calls are to be processed results in high levels
of availability even in the presence of a great number of attackers. The results
obtained by our formal model using statistical model checking tools were very
similar to the results we obtained running experiments at least for the Coordi-
nated Call attack scenarios.

For VoIP protocols, there have been some defense proposals. For example [19]
proposes a filtering mechanism for SIP flooding attacks. It is not clear whether
such mechanisms will be enough for mitigating the Coordinated VoIP attack, as
the number of messages needed to carry out such attack is much less, a feature
of ADDoS. Wu et al. [20] have proposed mechanism to identify intruders using
SIP by analyzing the traffic data. Although we do not tackle the identification
of intruders problem, we find it an interesting future direction.

The formalization of DDoS attacks and their defenses has been subject of
other papers. For example, Meadows proposed a cost based model in [21], while
others use branching temporal logics [22]. This paper takes the approach used
in [15,16,23], where one formalizes the system in Maude and uses the Statistical
Model Checker PVeStA to carry out analyses. While [15, 16, 23] modeled tra-
ditional DDoS attacks exploiting stateless protocols on the transport/network
layers, we are modeling stateful Application Layer DDoS attacks. Moreover, the
quality measures used for VoIP services under TDoS attacks, described in Sec-
tion 3, are different to the quality measures considered in the previous work.

More recently [4], we proposed SeVen showing that it can be used to mitigate
ADDoS attacks that exploit the HTTP protocol. This paper shows that SeVen
can also be used to mitigate DDoS attacks in VoIP protocols, but in order to
do so one needs state-dependent probabilistic distributions. This is because of
the quality requirements that we need in VoIP communications. We would like
to give a priority to the types of call that should be given more chances to keep
using resources of the server. In particular, we give preference to calls that do
not take more than the average duration time. Such quality measures are not
present in HTTP protocols that we analyzed in [4].

For future work, we are currently implementing controlled experiments with
the Prank Call attack carried out on the network. We expect that these exper-
iments also validate our simulation results for this attack. We are also thinking



on intrusion detection mechanisms. We are also interested in building defenses
for mitigating amplification attacks [13]. We have also been using SeVen for
mitigating High-Rate ADDoS attacks using Software Defined Networks [24].
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