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Tarik Terzimehić1, Simon Barner1, Yuri Gil Dantas1, Ulrich Schöpp1, Vivek Nigam2, Pei Ke2
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Abstract—The adoption of autonomous cars requires opera-
tional critical functions even in the event of HW faults and/or SW
defects, and protection of safety-critical functions against security
threats. Defining appropriate safe and secure architectures is
challenging and costly. In previous work, we have proposed
tools to automate the recommendation of safety and security
patterns for safety-critical systems. However, safety and security
measures may (negatively) influence system performance, besides
introducing additional development effort. We present a design
space exploration approach, a model-based engineering workflow
and tool prototype for automated guidance on trade-off decisions
when applying safety and security patterns on a given (unsafe)
baseline architecture. Based on models that abstract the vehicle’s
functionality and its software and hardware components, as well
as an engine for the automated pattern recommendation, we
investigate the optimization of HW/SW deployments, and provide
a trade-off analysis for different architecture candidates. We
implemented our approach in an open-source tool and evaluate
it with a model of the Apollo autonomous driving platform.

Index Terms—Autonomous vehicles, model-driven develop-
ment, design space exploration, architecture pattern, safety

I. INTRODUCTION

Autonomous driving has a huge potential to improve the
safety of road-based traffic, i.e., to reduce the number of ac-
cidents and traffic-related deaths. A prerequisite for achieving
this objective is that critical functions of autonomous cars
remain operational even in the event of HW faults and/or SW
defects, and that safety-critical functions are protected against
security threats [1]. Defining appropriate safe and secure ar-
chitectures is challenging and increases development time and
effort [2]. In previous work we have therefore proposed tools
to automate the recommendation of safety [3] and security [4]
patterns. However, so far we did not consider the performance
impact resulting from the application of patterns that typically
involve redundancy and therefore cause significant overhead.

The goal of this paper is to close this gap and to perform
a trade-off analysis w.r.t. the selection of architecture patterns
and deployment decisions, which both heavily impact system
performance [5]. Deployment optimization of automotive SW
architectures remains intractable for humans despite the trend
towards more centralized architectures [6] with fewer high-
performance electronic control units (ECUs) [7]. For instance,
the increasing adoption of hypervisors providing virtual de-
ployment targets in the form of time-space partitions results
in an increase of the complexity. At the same time, tightening
time-to-market requirements and frequent in-field software

updates require more systematic approaches to architecture
definition than experience knowledge.

Our overall contribution is a model-based Design Space
Exploration (DSE) approach and a tool prototype to provide
automated guidance for trade-off decisions when applying
safety and security patterns on a given (unsafe) baseline
architecture. The proposed approach leverages the automated
recommendation of safety patterns presented in [3] and op-
timizes SW/HW deployments for the resulting architecture
candidates. We evaluate our prototypical implementation in
the AutoFOCUS3 (AF3)1 open-source tool with a model of
the Apollo autonomous driving platform2.

II. BACKGROUND

A. Apollo Autonomous Driving Platform

This work targets a realistic autonomous vehicle architecture
based on the Apollo driving stack. Apollo is an open-source
implementation of an autonomous driving system with L4
capabilities [8]. A central part of its implementation is the
“Cyber RT” middleware, which implements a Service Oriented
Architecture (SOA). This middleware manages components of
the autonomous driving system, such as Perception, Planning
and Control, and provides a publish/subscribe mechanism for
the communication between software components.

B. Model-Based Design Space Exploration

The design of software-intensive systems, such as cur-
rent automotive systems, involves various architectural design
decisions (ADDs), such as deploying software components
(SWCs) to hardware components (HWCs), applying different
architecture patterns, determining the hardware layout (topol-
ogy), etc. [9]. These decisions satisfy certain constraints (e.g.,
memory limits of HWCs), and optimize certain optimization
goals or objectives (e.g., minimization of hardware costs).

Due to the complexity of current automotive systems, it is
difficult to manually make valid or optimal ADDs [7]. DSE
techniques are used when manual design decisions are difficult
due to a large exploration space. DSE defines an automated
process for finding solutions within a constrained solution
space [10]. DSE can be used together with Model-based
Design (MbD). MbD provides models that not only increase

1https://af3.fortiss.org/
2https://github.com/ApolloAuto/apollo



the level of abstraction but also provide the semantics needed
to automate design tasks. Models describe the system from
different viewpoints [11], e.g., the logical viewpoint describes
the functionality of the system, while the technical viewpoint
describes the SW/HW platform [12].

C. Safety and Security Analysis
During the design of safety-critical systems, safety and secu-

rity analysis are conducted by engineers to identify and address
safety and security artifacts. Examples of safety artifacts are
hazards and loss scenarios [13]. A hazard denotes a potential
source of harm. A loss scenario denotes the casual factors
(e.g., a software fault) that may lead to hazards. Examples
of security artifacts are assets and threat scenarios [14]. An
asset denotes an object (e.g., software component) that needs
protection. A threat scenario denotes the potential actions (or
simply attack) to violate the cybersecurity property of assets.
These artifacts may be addressed using architectural solutions
called safety and security architecture patterns.

A safety architecture pattern is an architectural solution for
tolerating loss scenarios/faults in the system architecture [15].
We have proposed a tool – SafPat – to automate the rec-
ommendation of safety architecture patterns for safety-critical
systems in [3]. SafPat supports several safety architecture
patterns, including fault-tolerant patterns (e.g., heterogeneous
duplex) that provide redundancy enabling the system to con-
tinue its operation in the presence of a loss scenario/fault.

A security architecture pattern is an architectural solution
for addressing threat scenarios in the system architecture [16].
We have proposed a tool – SecPat – to automate the recom-
mendation of security architecture patterns for safety-critical
systems in [4]. SecPat supports several security architecture
patterns, including message authentication that satisfies the
integrity of safety-critical data by encrypting and signing the
data. The use of architecture patterns, however, introduces
overhead due to, e.g., redundancy for safety reasons or encryp-
tion for security reasons that shall be considered by engineers
when selecting safe and secure architectural solutions.

III. METHODOLOGY

In Section III-A, we describe the overall MbD workflow
for analyzing safety, security, and performance of autonomous
driving architectures. Steps 1 and 2 summarize the workflow
part introduced in previous work [3]. Steps 3 and 4 describe the
application of the safety-aware deployment synthesis that is the
focus of this paper and thoroughly presented in Section III-B.

A. Overall Workflow
The applied MbD workflow comprises four main steps,

which are implemented in the AF3 tool:
Step 1 – Baseline Model. In the first step, a model of

baseline architecture without a SW/HW deployment is created
(Figure 1 left). The use case model investigated in this paper
captures an autonomous driving architecture based on the
Apollo driving stack in terms of the following elements3:

3We follow the modeling approach introduced in [12], but list only the
input relevant for the deployment workflow that is in focus of this work.

Fig. 1: Abstract baseline architecture with safety artifacts (left)
and safety pattern synthesis with additional components (right)

• Logical architecture is a hierarchical model of the
system components, their interfaces, connections, and
communication channels and topics.

• Task architecture is a technical view of software tasks
(i.e., SWCs) that realize the logical architecture and that
will be deployed on the hardware, including task anno-
tations such as RAM requirements, flash requirements,
worst case execution time (WCET), etc.

• Platform architecture is model of the HWCs (i.e., de-
ployment targets; ECUs in this paper) and their configura-
tion, including annotations such as RAM, flash memory,
Automotive Safety Integrity Levels (ASILs), costs, etc.

• Allocations are mappings of the elements between the
different architectural viewpoints, such as Components →
Tasks (mapping of components to tasks), Tasks → ECUs
(initial mapping of tasks to ECUs), etc.

• Safety artifacts are hazard definitions (with severity,
controllability, and exposure as defined in ISO 26262),
and loss scenarios as potential causes of a hazard.

Our approach also allows to model existing architecture
patterns and to map them to the addressed safety artifacts,
enabling the extension of existing architectures.

Step 2 – Safety Pattern Synthesis. This step receives as
input architectures and the safety artifacts defined Step 1.
It addresses the specified safety artifacts by recommending
one or several safety architecture patterns (e.g., acceptance
voting, heterogeneous duplex, etc.). For each recommended
architecture, safety pattern synthesis provides a set of safety
requirements that encode the prerequisites for the applica-
tion of the selected patterns. The modified architectures (see
Figure 1 right) include additional components needed for
the implementation of the recommended safety patterns (e.g.,
monitor, voter), or replicated components from the baseline
to ensure redundancy [3]. This step includes the computation
of “safety-critical communication topics” that need protection
against security threats that could affect safety.

Step 3 – Safety-Aware Deployment Exploration. This
step receives as input an architecture with safety patterns, the
corresponding safety requirements, and a list of safety-critical
topics from Step 2. Next, deployment constraints are derived
from the safety requirements generated in Step 2:

• ASIL-compliant allocation constraints
• ASIL decomposition constraints
• Task hardware decoupling constraints
From the list of safety-critical topics, a safety-aware cou-

pling optimization is configured to minimize inter-device
safety-critical communication, as well as resource utilization
optimization objective to balance load across used ECUs.



A user may define additional constraints, such as memory
utilization, fixed allocations of tasks to ECUs (e.g., due to
availability of I/Os), and design objectives (e.g., cost min-
imization) [7]. The input architecture model as well as the
deployment constraints and objectives are transformed into a
Satisfiability Modulo Theories (SMT) formalization. The Z3
solver [17] processes given SMT formalization and computes
a task-to-execution unit deployment and the ASILs for safety
pattern components that are subject to ASIL decomposition.

Step 4 – Trade-Off Analysis. This step receives as input an
architecture with safety patterns, safety artifacts defined by the
user, and the task-to-execution unit table computed in Step 3.
It provides the following trade-off analyzes:

• Impact of safety patterns and their deployments on system
performance: For generated safety solutions, we calculate
different performance criteria, such as communication
coupling and resource utilization, and compare them with
the baseline architecture without safety patterns.

• Impact of deployment optimization on security patterns:
We compute security artifacts based on the defined safety
artifacts and determine the necessary security patterns:
access control shared memory, message authentication,
mutual authentication, authorization, and firewall (see [4]
for more details). We then apply the deployment opti-
mization from Step 3 to reduce the overhead introduced
by security patterns. More precisely, we focus on min-
imizing the effort required to secure communications, a
significant factor in data-intensive applications such as
autonomous driving [6].

B. Safety-Aware Deployment Synthesis

This section describes the deployment exploration (intro-
duced in Step 3) that is based on an SMT formalization
and uses Microsoft’s Z3 SMT solver4 as backend. A user
can specify goals (constraints and optimization objectives) by
means of goal pattern language [7], [18] that are passed to the
Z3 backend using its Java API. Z3 calculates the deployment
(or allocation) of tasks to processing units (e.g., ECUs).

For example, a user can specify a memory utilization
constraint that prohibits exceeding the hardware memory lim-
its [18]. In addition to searching for valid deployments, i.e.,
deployments that satisfy given constraints, a user can specify
design objectives, e.g., cost objective [7]. In this case, Z3 will
find valid deployment that yields minimal hardware costs.

For this paper, we extended the deployment exploration
plugin in AF3 and integrated it with safety and security pattern
synthesis. Besides system architecture (task and platform ar-
chitecture with annotations), the deployment exploration uses
safety requirements and information on safety-critical topics
from Step 2 (safety pattern synthesis). Deployment exploration
generates accordingly safety-related deployment constraints
that enforce the underlying safety requirements.

For example, the safety pattern synthesis outputs a require-
ment ”A component av monitor(acTestV1, ”relative map”)

4https://github.com/Z3Prover/z3

must be deployed to an ASIL D ECU”. Deployment explo-
ration will then automatically derive a formal specification5

for allocation constraint that will force deployment of the
task Task av monitor(acTestV1, relative map) to an ASIL D
ECU. Besides safety-related constraints, deployment explo-
ration generates safety-aware coupling and memory utilization
optimization goals for each safety solution from the safety syn-
thesis step. Applying different optimization goals in deploy-
ment exploration, we can improve the overall performance.

After a user selects solution and switches to the deploy-
ment viewpoint, corresponding safety-relevant constraints and
optimization goals will be listed. In addition to the safety
constraints, deployment exploration generates memory utiliza-
tion constraints to avoid trivial deployment solutions (e.g.,
deploying all tasks to a single ECU), as well as fixed allocation
constraints to ensure deployment of the particular tasks to
the ECUs with required hardware sensors, actuators, or com-
munication interfaces. A user can define additional (generic)
constraints and optimization goals in the constraint editor and
combine them with generated ones.

1) Deployment constraints: Deployment exploration gen-
erates different deployment constraints that implement
deployment-related safety requirements:

Hardware decoupling constraint: Some safety patterns,
such as triple modular redundancy pattern, require that partic-
ular tasks are hardware decoupled to address hardware faults.
This will be achieved by hardware decoupling constraint that
will prohibit deployment of specified tasks to the same ECU.

ASIL allocation constraint: Safety-critical tasks, which
have been assigned an ASIL, have to be deployed to an
ECUs that is certified to at least that ASIL. For example, for
an ASIL D task, deployment exploration generates allocation
constraints that limit deployment possibilities of the given task
to ASIL D ECUs.

ASIL decomposition constraint: Safety synthesis modifies
the logical and technical architectures and generates additional
components (e.g., redundant components), where for high
ASILs, ASIL decomposition [19] according to ISO 26262 is
applied. For example, when the heterogeneous duplex pattern
is recommended, the original SWC is split into two SWCs
whose ASIL sum is equal or greater than ASIL from the
baseline architecture (e.g., ASIL D = ASIL A + ASIL C =
ASIL B + ASIL B). After ASIL decomposition, the ASIL
allocation constraints are applied for the resulting SWCs.

2) Deployment optimization goals: Deployment explo-
ration automatically generates optimization goals that can be
used to optimize deployment and perform trade-off analysis.

Safety-aware coupling optimization minimizes safety-
critical inter-ECU communication. A user can apply safety-
aware coupling optimization to reduce:

• attack surface for safety-critical device communication
• cost for message signatures (as measure to ensure in-

tegrity of safety-critical communication)
• sensitivity for (communication) failures

5For details on deployment formalization see [7].



This is achieved by making safety-critical communication
local (intra-ECU), and thus removing need to sign remote
(inter-ECU) communication, which may have a negative im-
pact on costs and the overall performance of the system [20].
However, due to hard constraints (e.g., hardware decoupling
required by many architecture patterns), it is not always
possible to make safety-critical communication local.

To illustrate safety-aware optimization, we use a subset of
the Apollo model. Figure 2a depicts a manual task deployment
onto three ECUs, without any optimization. Such a deploy-
ment yields a higher safety-critical coupling and, consequently,
higher overhead (Figure 2c):

• Eight ports need to generate or verify signatures
• Six tasks need to generate or verify signatures
• Five remote safety-critical signals
Figure 2b depicts a deployment with safety-aware optimiza-

tion, yielding lower safety-critical coupling and, consequently,
lower overhead (Figure 2c):

• Two ports need to generate or verify signatures
• Two tasks need to generate or verify signatures
• One remote safety-critical signal
We calculate critical and non-critical couplings between

each two ECUs as the sum of external (or remote) critical and
non-critical signals between each two ECUs, respectively. The
overall coupling is calculated as weighted sum of critical and
non-critical couplings across all ECUs. Critical couplings are
weighted 1000-time more. Applying this optimization goal,
we minimize the overall coupling to reduce communication
load, achieve lower service end-to-end latency (and improve
performance in general), increase reliability, etc. [21], [22].
By applying higher weights on critical-coupling, we especially
minimize critical remote communication.

Resource utilization optimization balances the relative
memory consumption. We consider the additional load for
safety- and security-critical tasks (not considered in ini-
tial/baseline deployment) and approximate the additional task
load as a simple function of task ASILs. A user can apply the
resource utilization objective to balance the load of ECUs (no
ECU is overloaded) and increase reconfiguration possibilities

(there is enough buffer for the dynamic redeployment during
runtime). Therefore, we first calculate the weighted relative
memory usage for each ECU, and then minimize the variance
across all used ECUs. Therefore, we balance the overall ECU
utilization: each ECU will be approximately equally loaded.

IV. EVALUATION

In this section, we demonstrate the applicability of the
proposed workflow on the Apollo driving stack and perform
a trade-off analysis to investigate effects of deployment op-
timization on safety, security, and performance aspects of
software-intensive autonomous vehicle systems.

A. Use Case

We modeled the Apollo autonomous vehicle architecture
using the AF3 open-source tool. The Apollo AF3 model
accounts for functional and logical aspects of the system
(Figure 2 in [23]), as well as technical aspects of the SW and
HW architecture (Figure 4 in [23]). The Apollo AF3 model
comprises 68 logical components (58 software tasks) and
32 hardware components (10 ECUs), representing a baseline
architecture and a starting point for the use of our safety-
oriented engineering process.

To demonstrate the applicability of the proposed solution
and subsequently perform a trade-off analysis, we defined haz-
ards and loss scenarios (i.e., safety artifacts) for the following
components of the Apollo architecture:

• recognition component is part of the perception compo-
nent. It receives images from cameras and processes the
images to recognize objects on the road.

• postprocessor is part of the control component. It outputs
control actions (e.g., acceleration) to assist with the
steering of a vehicle.

• relative map generates a real-time relative map in the
body coordinate system and a reference line for planning.

Next, we run safety pattern synthesis to address the specified
safety artifacts. As a result, the synthesis recommends 64
safety solutions that address the safety artifacts in different

(a) Manual deployment without safety-aware
optimization

(b) Safety-aware deployment optimization (c) Overhead for remote safety-critical
communication

Fig. 2: Example for safety-aware coupling optimization



ways. Each solution contains one or several instances of rec-
ommended safety architecture patterns to address the loss sce-
narios in the specified components. These safety architecture
patterns require additional components, e.g., diverse redundant
components to take over in the presence of failures. A set of
requirements comes along with each solution recommended by
the safety synthesis. These requirements shall be implemented
during the system development. A subset of such requirements
is implemented by deployment synthesis (c.f. Section III-B).

After safety pattern synthesis, one of the generated solutions
with the recommended safety patterns is selected for the
subsequent deployment synthesis in the exploration perspec-
tive of AF3. This perspective then lists the generated safety-
related constraints, as well as application-specific constraints
(memory utilization constraints and hardware allocation con-
straints), and different optimization goals. The user selects
all constraints and a single or multiple optimization goals
(e.g., safety-aware coupling minimization), and starts the de-
ployment optimization. Based on the underlying formalization
of the constraints, the Z3 backend determines a deployment
that satisfies all selected constraints and minimizes remote
safety-critical communication. Thereby, we demonstrate the
applicability of the proposed MbD workflow to automatically
generate safety-relevant deployment constraints and synthesize
deployments that fulfill safety requirements and, therefore,
reduce the development effort.

B. Trade-Off Analysis

Safety synthesis yields 64 different solutions that address
the specified hazards and loss scenarios in different ways.
Table I lists all 64 safety solutions, which apply the following
safety patterns:

• Acceptance voting
• Heterogeneous triple modular redundancy
• Heterogeneous duplex
• Simplex architecture
Each safety solution specifies a different number of safety

requirements and results in a different number of additional
SWCs to fulfill the corresponding safety requirements. These
safety requirements and additional components can be un-
derstood as the overhead caused by safety synthesis: each
requirement and each additional component have to be im-
plemented (additional development effort) and may negatively
impact some system parameters such as hardware utilization,
software maintainability, communication coupling, etc.

Thereby, particular safety patterns lead to different over-
head, as shown in the heat-map in Table I. We can see that
the application of the acceptance voting pattern has the biggest
influence on the safety overhead: the more acceptance voting
pattern instances are used, the more safety requirements are
specified, and the more additional components are needed.
This is confirmed by the Pearson correlation [24], which indi-
cates a significant large positive relationship between accep-
tance voting pattern instances and number of additional com-
ponents (r(62) = 0.968, p < 0.001), as well as a significant
large positive relationship between acceptance voting pattern

TABLE I: Safety solutions apply different patterns and yield
different number of additional components and requirements.

#Safety Pattern Instances

Solution Acceptance
Voting HTMR Heterogeneous

Duplex
Simplex

Architecture #Components #Requirements

1 3 0 0 0 18 53
2 2 1 0 0 15 46
3 2 1 0 0 15 46
4 2 1 0 0 15 46
5 2 0 0 1 14 49
6 2 0 0 1 14 49
7 2 0 0 1 14 49
8 2 0 1 0 14 47
9 2 0 1 0 14 47
10 2 0 1 0 14 47
11 1 2 0 0 12 39
12 1 2 0 0 12 39
13 1 2 0 0 12 39
14 1 1 0 1 11 42
15 1 1 0 1 11 42
16 1 1 0 1 11 42
17 1 1 0 1 11 42
18 1 1 0 1 11 42
19 1 1 0 1 11 42
20 1 1 1 0 11 40
21 1 1 1 0 11 40
22 1 1 1 0 11 40
23 1 1 1 0 11 40
24 1 1 1 0 11 40
25 1 1 1 0 11 40
26 1 0 0 2 10 45
27 1 0 1 1 10 45
28 1 0 1 1 10 45
29 1 0 0 2 10 43
30 1 0 0 2 10 43
31 1 0 1 1 10 43
32 1 0 2 0 10 43
33 1 0 2 0 10 43
34 1 0 2 0 10 42
35 1 0 1 1 10 41
36 1 0 1 1 10 41
37 1 0 1 1 10 41
38 0 3 0 0 9 32
39 0 2 0 1 8 35
40 0 2 0 1 8 35
41 0 2 0 1 8 35
42 0 2 1 0 8 33
43 0 2 1 0 8 33
44 0 2 1 0 8 33
45 0 1 0 2 7 38
46 0 1 0 2 7 38
47 0 1 0 2 7 38
48 0 1 1 1 7 36
49 0 1 1 1 7 36
50 0 1 1 1 7 36
51 0 1 1 1 7 36
52 0 1 1 1 7 36
53 0 1 1 1 7 36
54 0 1 2 0 7 34
55 0 1 2 0 7 34
56 0 1 2 0 7 34
57 0 0 0 3 6 41
58 0 0 1 2 6 39
59 0 0 1 2 6 39
60 0 0 1 2 6 39
61 0 0 2 1 6 37
62 0 0 2 1 6 37
63 0 0 2 1 6 37
64 0 0 3 0 6 35

instances and the number of safety requirements (r(62) =
0.916, p < 0.001). The Pearson correlation, applied on safety
solutions without acceptance voting pattern instances, indi-
cates significant large positive relationships between hetero-
geneous triple modular redundancy pattern instances and the
number of additional components (r(25) = 1, p < 0.001), and
between simplex architecture pattern instances and the number
of safety requirements, (r(25) = 0.945, p < 0.001).

To analyze the impact of safety synthesis on the system
performance in more detail, we chose the two solutions with
the highest overhead (solutions 1 and 2), and the two solutions
with the lowest overhead (solutions 63 and 64). Solutions 1
and 2 specify the highest number of safety requirements,
53 and 46 requirements, respectively, and yield up to 31%
more tasks and up to 40% more signals compared with the
baseline architecture without safety measures. On the other



(a) Optimization of generic
coupling

(b) Optimization of generic
utilization

(c) Optimization of safety-aware
coupling

(d) Optimization of safety-aware
utilization

Fig. 3: Impact of applied safety measures on system performance

hand, solutions 63 and 64 implement 37 and 35 requirements,
respectively, and yield 14% more tasks and up to 15% more
signals compared with the baseline architecture.

The application of safety and security patterns will not
only improve the safety and security of the given system,
but it will also introduce additional overhead. Besides the
development effort for additional SWCs, safety and security
measures may (negatively) influence the system performance.
Therefore, we performed several experiments using the Z3
SMT solver [17] in terms of deployment syntheses optimizing
different objectives:

• Generic coupling optimization minimizes all inter-ECU
communication.

• Safety-aware coupling optimization minimizes espe-
cially safety-critical inter-ECU communication.

• Generic resource utilization optimization balances rel-
ative memory consumption across all ECUs.

• Safety-aware resource utilization optimization balances
relative memory consumption across all ECUs, consider-
ing additional load for safety- and security-critical tasks.

Due to the high complexity of the deployment synthesis
problem – the most complex architecture of safety solution 1
contains 76 tasks (deployable units), 200 signals, and 10 ECUs
(deploying targets) – we introduced a calculation timeout of

(a) Safety-aware coupling
optimization reduces usage of

expensive message authentications

(b) Safety-aware coupling
optimization favors usage of cheaper
access control shared memory pattern

Fig. 4: Reducing overhead with deployment optimization

six hours, which leads to sub-optimal deployment solutions.
Figure 3a and Figure 3b show results for generic coupling

and resource utilization optimizations, respectively. Optimized
(but not optimal) generic coupling (i.e., number of remote,
inter-ECU, communications) has increased by applying dif-
ferent safety patterns (Figure 3a). Initial (not optimized)
communication coupling increased from 14% (when safety
solution 63 is applied) to 45% (when safety solution 1
is applied) compared to the baseline architecture without
safety measures. The impact of safety solutions on optimized
coupling is even higher: optimized communication coupling
increased from 154% (when safety solution 64 is applied)
to 291% (when safety solution 1 is applied) compared to
the optimized baseline architecture. This negative impact of
the safety solutions is caused by the higher number of tasks
and signals in safety solutions compared to the baseline
architecture. On the other hand, the application of the safety
patterns did not have much influence on the variance of the
ECU utilization (Figure 3b). Additional tasks introduced by
different safety solutions were uniformly distributed across
available ECUs, having no significant impact on the variance
of the relative memory utilization.

Figures 3c and 3d show results for safety-aware coupling
and resource utilization optimizations, respectively. Here we
had to skip comparisons with the baseline architecture, as
it lacks necessary safety-relevant information, such as the
criticality of communication caused by the defined loss sce-
narios. The safety-aware coupling optimization reduced the
weighted sum of remote signals quite equally, by 62.5%
on average, whereas the safety-aware utilization optimization
had a different impact on the safety solutions and reduced
the variance of relative weighted memory usage by 9% for
solution 64, and by 45% for solution 2.

Besides analyzing the influence of safety patterns on per-
formance (i.e., coupling and utilization), we also analyzed
whether the safety-aware deployment optimization leads to
less safety and security overhead. Figure 4 shows the bar charts
for the number of message authentication and access control
shared memory patterns, respectively, with different deploy-
ment optimizations. We can conclude that the application of
safety-aware coupling deployment optimization decreases the



security overhead by reducing the number of expensive mes-
sage authentications (needed for inter-ECU communication)
in favor of the cheaper access control shared memory pattern.

V. RELATED WORK

Numerous works investigate the application and synthesis
of safety and security architecture patterns, like, for example
in [25]–[28]. However, those works neglect the interference of
the applied safety and security architecture patterns with the
system performance and do not consider DSE. On the other
side, optimization of different quality attributes (QAs) through
deployment synthesis is thoroughly investigated as well (e.g.,
in [5], [29]–[31]) but most often not in conjunction with the
application and synthesis of safety and security architecture
patterns. Only a few works, beside ours, investigate the appli-
cation of DSE in conjunction with safety and security aspects.

Ebner et al. investigate the application of DSE on a safety-
critical autonomous driving systems [32]. They generate de-
sign variants (deployments or allocations) and analyze them
according to possible erroneous system states. The approach
is demonstrated on a simplified electric drive-train example
with four functionalities (i.e., SWCs) and four HWCs (al-
though additional hardware resources might be required for
redundancy safety measures). For the applied example, the
proposed approach seams applicable. However, the question
arises, whether the proposed safety analysis is feasible for
all possible design variants. For example, the baseline Apollo
AF3 model, which we use in our paper, contains 58 tasks (i.e.,
SWCs) and 10 ECUs (i.e., HWCs), leading to 1058 possible
deployments [33]. Performing safety analysis for each of
those, like proposed in this paper, seems unrealistic. Further, it
is unclear, how the design variants are generated, i.e., whether
they were optimized towards particular optimization goals,
which methodology was used, etc.

Hu et al. [34] proposed a heuristic to calculate schedules
while satisfying safety requirements and optimizing devel-
opment costs. Development costs are approximated by the
applied ASILs – higher ASIL costs more – and can be reduced
by ASIL decomposition as ”a great option for balancing
system conflicting performance requirements” [34]. The au-
thors modeled the task architecture of an automotive system
as a directed acyclic graph and evaluated the approach on
a benchmark. This work, however, focuses solely on ASIL
decomposition, which is infeasible for COTS components with
fixed ASILs provided by suppliers [35].

Similarly to our work, Obergfell et al. [36] advocate the
application of SOA in the automotive domain and apply DSE
to synthesize deployment candidates and help designers to
make sound early-stage design choices. Thereby, they focus
on minimizing the utilized ECU cores and verifying timing
requirements using a simulation framework. This work con-
siders safety requirements as well, and formulates them as
deployment constraints, but it lacks an impact analysis of
deployment optimization on safety overhead, and vice versa.

Yasaweerasinghelage et al. [20] apply a genetic algorithm
to optimize architectures regarding cost and performance (i.e.,

response time) while satisfying security constraints. They
evaluate the proposed approach on a rather simple example
(9 SWCs and 3 HWCs) to find out that the resulting secure
architecture ”tends to be more expensive and have inferior
performance” [20]. Our work goes one step further towards
supporting architects in early design decisions by analyzing
the impact of deployment optimization on security overhead.

Apvrille et al. [37] also focus on the interaction of safety
and security during design and analyze how safety, security
and performance requirements conflict or support each other.
They extended an open-source framework for UML/SysML-
based design of embedded systems by adding safety and
security features (operators, formal proof) to diagrams. They
conduct a qualitative analysis of the performance, security
and safety requirements interference, whereas our trade-off
analysis is quantitative and relates well-known safety and
security architecture patterns with performance QAs.

A quantitative trade-off analysis is given in [38], where five
parameters, e.g., cost and communication load, were analyzed
in conjunction with safety measures. This work compares
four different architecture solutions to achieve redundancy for
fault-tolerant and fail-operational systems, using three example
applications (modeled as graphs). The main findings of the
conducted trade-off analysis can be used as guidance or rec-
ommendations for the architects. For example, virtualization
with a zone-based architecture should be applied to implement
redundancy if the reduction of costs and failure probabilities
are the main criteria. Our trade-off analysis complements this
study and considers deployment design decisions with other
safety and security architecture measures beside redundancy.

VI. CONCLUSION

We found that early ADDs, such as deployment synthesis
of SWCs (i.e., tasks) to HWCs (i.e., ECUs), can reduce the
overhead of applying safety and security architecture patterns:
i) our MbD workflow was able to automatically generate
safety-relevant deployment constraints and synthesize deploy-
ments that fulfill safety requirements and, therefore, reduce the
development effort, ii) the application of the proposed safety-
aware coupling optimization decreases the security overhead
by reducing the number of expensive message authentications
and replacing them with the cheaper access control shared
memory pattern. Although our work is not the first one that
performs DSE in conjunction with safety and security require-
ments (see, e.g., [20], [32]), to the best of our knowledge, we
are the first to implement such a complete MbD workflow
that 1) considers performance, safety and security system as-
pects, 2) automatically generates deployment constraints out of
synthesized safety requirements, and 3) optimizes deployment
synthesis towards security overhead reduction.

Furthermore, we found out that the application of the accep-
tance voting safety pattern leads to the highest development
overhead, i.e., this safety pattern requires the most additional
components and safety requirements, followed by the simplex
architecture and the heterogeneous triple modular redundancy
patterns. The application of the heterogeneous duplex pattern



leads to the lowest development overhead. For future work, we
will analyze further safety patterns (e.g., the monitor-actuator
and homogeneous duplex patterns) to obtain a complete picture
of the safety patterns’ overhead and provide adequate guidance
to the architects.

Our trade-off analysis confirmed the expected negative
impact of the safety patterns on the communication coupling
due to additional SWCs (i.e., tasks) and their connections (i.e.,
signals). However, the application of different safety patterns
did not affect the variance of the ECU utilization. Additional
tasks introduced by different safety solutions were uniformly
distributed across available ECUs, having no significant impact
on the variance of the relative memory utilization. We plan
to expand our analysis on further QAs to assist the user in
selecting the system architecture with adequate architecture
patterns for the QAs of interest.

The benefits of our work are twofold. First, we extended
an existing open-source DSE implementation in the AF3 tool
and integrated it with the reasoning engine for the safety
and security patterns recommendations [3], [4]. Thereby, we
demonstrated the applicability and benefits of this model-
based design process for the considered subsystem of the
Apollo autonomous driving stack. Second, we provide a trade-
off analysis of deployment design decisions in conjunction
with the application of safety and security patterns, which
can serve as a guideline for comparing different possibilities
(e.g., application of different deployment optimization goals,
application of different architecture patterns, etc.) and selecting
the appropriate ones for the given context.
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