
ExplicitCase: Tool-support for Creating and
Maintaining Assurance Arguments

Integrated with System Models
Carmen Cârlan, Vivek Nigam, Sebastian Voss and Alexandros Tsalidis

fortiss — An-Institut Technische Universität München, Germany

{carlan, nigam, voss, tsalidis}@fortiss.org

I. ABSTRACT

Abstract—Assurance cases are collections of standard-
mandated documents that entail the specification of system’s
objectives and a collection of processes, development or ver-
ification evidence regarding the satisfaction of the respective
objectives. A considerable amount of work has been done in the
direction of modelling assurance cases, to support communication
and reasoning regarding the system’s safety. In this work, we
present a set of features of ExplicitCase - a tool for modeling
assurance cases. While there is a plethora of tools for creating
and managing model-based assurance cases, the uniqueness of
our tool is that it integrates assurance case models with system
models created in AutoFOCUS3 (AF3) - an open-source model-
based development tool for embedded software systems. While
trying to keep up with state-of-the-art assurance case editors,
the newly implemented features support assurance case creation
using typed patterns, change impact analysis for assurance cases,
assessment of the confidence in the created assurance arguments,
export of the argumentation diagrams generated in ExplicitCase
and integration of assurance case models with system models
created in AutoFOCUS3. In particular, based on the integration
with AF3 system models, we propose automatic support for
detecting the impact of a change within system models on the
assurance case model, thus enabling the integrated development
of system and assurance case models.

Index Terms—assurance cases, model-based development,
change impact analysis

II. INTRODUCTION

Standards in various safety-critical domains mandate the
existence of safety assurance cases. A safety assurance case is
a structured argumentation on system safety, based on evidence
proving the satisfaction of the system’s safety goals, in a
certain context, under certain assumptions [1]. Assurance cases
comprise the collection of all documents generated during the
execution of standard-mandated activities. In the last years,
extensive research has been done in the direction of model-
based assurance cases. First, model-based assurance cases
provide an overview of the argumentation underlying in the
documents. Second, they support automatic manipulation of
assurance cases. There already exists a plethora of tools for
editing and managing model-based safety cases. In previous
work we also propose such a tool, based on a metamodel built
in compliance with the standard Goal Structuring Notation

(GSN) [2]. While other assurance case editors integrated
with system modeling tools exist, our tool’s uniqueness lies
on the fact that we integrate assurance case models with
system models and verification artefacts generated with Aut-
oFOCUS3 (AF3) [3]. AF3 is an open-source model based
development tool for distributed, reactive, embedded software
systems, based on the FOCUS semantics. ExplicitCase offers
computer-aid for writing assurance argumentation regarding
the correctness of the software automatically generated from
AF3 models. Such assurance argumentation is necessary for
software certification.

Maksimov et. al. [4] have done a survey regarding existing
assurance case editors. They define the following six distinct
tool functionalities specific to such editors: creation, mainte-
nance, assessment, integration, reporting and collaboration.
They then define four levels of the implementation of these
functionalities (from D - weakest support to A - strongest
support), while enumerating a set of features corresponding
to each level. Given the tool features we implemented in
previous work [5], we have achieved level B for the creation,
maintenance, assessment and integration with other artefacts
of assurance cases.

a) Our long-term goal: For software certification, users
of AF3 modelling embedded software systems need to pro-
vide assurance argumentation. System models or verification
results in AF3 may act as evidence supporting the assurance
argumentation. Our long-term goal is to provide our users
with a tool equipped with all state-of-the-art functionalities
of an assurance case editor, while enabling the integrated
development of assurance case and AF3 system models. Such
integrated development allows the assurance case model to
evolve along the system models created in AF3.

To achieve our long-term goal and to keep up with the state-
of-the-art assurance case editors, in this work, we implement
or extend five functionalities of the tool:

• Support for Assurance Case Creation. In previous
work we present how assurance cases can be modeled in
ExplicitCase [6]. In this work, we offer support for the
specification and instantiation of argumentation patterns



that can be reused in assurance cases of other projects,
aiding users to develop convincing assurance cases.

• Support for Assurance Case Maintenance. During
system development, the system artefacts modeled in AF3
may undergo changes. Therefore, support for maintaining
the system’s assurance case model given a change in
referenced system models is necessary. First, we provide
automatic annotation of challenged assurance case ele-
ments given changes in referenced AF3 system model
elements. Second, we implement in ExplicitCase a state-
of-the-art change impact analysis algorithm [7].

• Support for Assessment of Assurance Cases. Previ-
ously, we presented on-the-fly checks of the syntax of as-
surance arguments in ExplicitCase. One other possibility
for assessing assurance cases is to assess the confidence
in the validity of the argumentation. Based on the work
of Duan et. al. [8], we implement in ExplicitCase a new
feature allowing users to annotate GSN-based nodes with
information regarding their confidence in the validity of
argumentation claims.

• Support for Assurance Case Report Generation. The
GSN-based diagrams created in our tool shall be used
in different documents. Consequently, we implement a
feature supporting the export of diagrams generated in
ExplicitCase into pdf, png or jpeg files that can be then
integrated into other documents.

• Support for Assurance Case Integration with other
Artefacts. To support automatic creation and mainte-
nance of assurance arguments, there is a need for the in-
tegration of assurance case models with system artefacts.
ExplicitCase enables integrated development of assurance
case and AF3 native system models, as presented in
previous work [5]. To support the various needs of users,
in this work we extend this feature, by allowing users to
reference any type of AF3 native system model elements
to any core assurance case element (i.e., goal, strategy,
solution, context, justification, assumption). Furthermore,
while previously one assurance case element could only
have one reference to a single AF3 native system model
element, now it may reference a set of elements.
b) Paper structure: First, we provide some background

information regarding model-based assurance cases (see Sec-
tion III). Second, in Section IV, we present how we support
the creation and instantiation of GSN-based assurance case
patterns. Third, in Section V, we present how we enable
multiple, constraint-free hyperlinking. We then continue with
Section VI, where we present how users of ExplicitCase can
perform change impact analysis on assurance case models.
In the next two sections, we present two new features of
ExplicitCase that enable users to specify quantitative confi-
dence assessment in the assurance case models and to export
the GSN-based diagrams to external files. Towards the end,
we discuss on the contribution of this work, by comparing
ExplicitCase with state-of-the-art assurance case editors (see
Section IX). We conclude with a summary and a discussion
about possible directions of future work (see Section X).

Figure 1: Illustration of the GSN elements.

III. PRELIMINARIES

a) Goal Structuring Notation (GSN): One manner to
model assurance cases is based on the standardized and com-
monly used Goal Structuring Notation (GSN) [2]. GSN sup-
ports the graphical representation of the logical flow between
safety claims, depicted as goals, strategies for decomposition
of the goals in subgoals and evidence for the truth of the
claims, depicted as solution elements, with the help of the Sup-
portedBy relationship (see Figure 1). With GSN one can also
depict contextual information regarding the argumentation, via
context and assumption nodes and the rationale behind the
arguments with the help of justification nodes.

b) GSN patterns: GSN has also an extension dedicated
for assurance case patterns. Similarly to design patterns,
assurance case patterns are argumentation fragments that may
be reused for arguing about the satisfaction of similar goals, in
similar contexts [9]. The claims within patterns may contain
words in curly brackets that shall be replaced with project
specific information, when the pattern is applied in an as-
surance case. Matsuno et. al. [10] go a step forward and
introduce typed patterns, where these words in curly brackets
are actually variables of certain type. Typed patterns enforce
the instantiation of claims within patterns with the correct
type of information. Elements in patterns may be annotated
as uninstantiated when their claims require project-specific
information. Also, goals and strategies may be annotated
as undeveloped if they require to be further developed by
subgoals or solutions. On the one hand, optional relationships
and entities can be used for describing the parts of the argu-
mentation that are not mandatory to be used in the instantiated
argumentation. On the other hand, relationships having their
multiplicity attribute set to true enable the usage of multiple
instances of a certain part of the pattern.

c) Change impact analysis for safety case: Kelly et.
al. [7] propose a change management process for GSN-based
assurance cases. This process has two phases: the damage
and the recovery phase. Whereas in the damage phase, an
impact analysis for a challenge to the validity of a GSN



node is done on the entire GSN argument, in the recovery
phase the assurance case is adjusted to the change. Before
the impact analysis, one needs to identify the cause of a
challenge in an assurance case. Challenges in assurance cases
may have different causes, such as adding a new requirement,
a change in system design, or a change in the operational
context. Then, the GSN elements that may be challenged
due to this cause shall be identified. The potential area of
argumentation impacted by a challenge in one GSN node may
be identified automatically, using an algorithm. The outcome
of the change impact analysis is a set of GSN elements
annotated as potentially impacted. The selection of the actually
impacted nodes is to be done by the safety engineer.

d) ExplicitCase: The current work extends the function-
ality of ExplicitCase [5], a model-based assurance case editor.
In previous work, we presented out proposed GSN-based
metamodel [6]. In ExplicitCase, all classes modeling GSN
nodes (e.g., goals or solutions) extend the ArgumentElement,
which is an abstract class for depicting any type of GSN node.
Assurance cases in ExplicitCase have a modular structure,
being formed of ArgumentModules. An argument module is a
group of highly-coupled GSN nodes, which can communicate
with other modules via interfaces. Usually, a change in a
module does not affect other modules. To support users
in building correct GSN argumentation structures, the tool
implements modeling constraints and on-the-fly checks, which
enforce the best practices for creating assurance cases. Also,
the tool allows referencing external files in GSN elements.

System modeling in AutoFOCUS3 AutoFOCUS3 (AF3) [3]
is a model-based development tool. With AF3 one can model
different levels of abstractions (or views) for a system. At
the requirements level, the user can model plain-text or for-
malized requirements. The logical architecture (LA) describes
the logical structure of a system in form of components
andcommunication links. The components have interfaces and
their behavior may be modeled via state or mode automaton.
The technical architecture (TA) is a model of the hardware:
processors, buses, actuators and sensors. In AF3, deployments
- allocations of components from the logical architecture on
components from the platform architecture and schedules -
order of tasks executions can also be modeled. At the imple-
mentation level, the source code is automatically generated
from the aforementioned models.

IV. CREATION OF CONVINCING ASSURANCE ARGUMENTS

To support ExplicitCase’s functionality of creating assur-
ance cases, we implement a feature enabling users to create
and instantiate GSN-based patterns. Patterns are argumentation
structures already successfully used in previous projects that
can be re-used in similar projects, thus supporting the creation
of convincing arguments.

A. Metamodel Extension for Patterns

To enable the creation and manipulation of patterns in
ExplicitCase, we extended our metamodel, as presented in
Figure 2. First, we add the extensions recommended by the

GSN standard [2]. Consequently, we add to the metamodel
a class representing the option entity. Then, we enhance the
ArgumentElement class with attributes to specify undeveloped
and uninstantiated elements and we add to the Assurance-
CaseConnection class attributes to depict multiplicity and
optionality. Second, we enable typed claims by adding to the
ArgumentElement class an attribute of type Claim. A claim is
a construct specifying the text-based claim, the pattern claim,
based on which the text-based claim is to be created, and a set
of variables (i.e., the words in curly brackets). A variable has
an artefact type and a value. Variable types may be any type
of AF3 native system model elements, strings or documents.

B. Pattern Creation
An argument module within ExplicitCase may be saved

as a pattern in the AF3 assurance case pattern library if
it has no references to any artefacts (see Figure 2). When
creating a pattern, the user may want to annotate an argument
element as being uninstantiated or undeveloped. As a visual-
aid, uninstantiated and undeveloped entities are depicted in
different colors. Furthermore, a pattern may contain option
entities and optional and generalized relationships.

a) Typed claims: The claims in argument elements
within patterns may contain words in curly brackets that shall
be then replaced with information specific to the system the
pattern is instantiated for. While such claims may be written
as strings, in ExplicitCase we also enable the specification of
typed claims. After writing the text of the claim, the user may
create for each world in curly brackets a variable, declaring
the variable’s type.

C. Pattern Instantiation
To use a pattern in a current assurance case, the user shall

add the respective pattern from the Assurance Case Pattern
Library in the current assurance case by drag-and-drop (see
Figure 2). An instance of a pattern is actually an argument
module. Then, the user shall go through each element within
that argument module and instantiate it.

a) Undeveloped and uninstantiated entities: If a goal is
annotated as undeveloped in the pattern, then it shall either
be further-developed by subgoals or a solution or it shall
be replaced by an away goal referencing a goal in another
module, further developing the argumentation. Similarly, an
undeveloped strategy shall be added subgoals. To annotate a
GSN entity as instantiated, the entity’s claim needs to have
all its claim variables instantiated.

b) Option entities: Option entities are only in patterns.
When instantiating the pattern, the engineer shall select the
subgoals that will be used. After the selection, the unused
goals, together with the option entity are automatically deleted.

c) Optional relationships: When instantiating a pattern,
the user may choose to delete certain optional relationship. If
the target argument element of the respective relationship is
not connected to any other part of the argumentation, then the
respective element is deleted, together with the respective rela-
tionship and all its children elements (i.e., subgoals, strategies,
contextual elements).



Figure 2: Illustration of the patterns feature.

d) Generalized relationships: If the multiplicity annota-
tion of a relationship is set to true, the user may choose to
multiply the argumentation targeted by this relationship.

e) Typed instantiation of claims: If the claim of a node in
the instantiated pattern is typed (i.e., it contains variables), the
user can instantiate the claim’s variables by selecting from
the AF3 elements of the type of the respective variables.
Some claims have, however, words in curly brackets without
any dedicated variables. These words are to be instantiated
manually, in the dedicated text field.

V. INTEGRATION WITH AF3 SYSTEM MODELS

A safety assurance case is a collection of all the existing
evidence and supporting material that the system satisfies its
safety objectives. From safety analysis results to code file, any
system development artefact may be referenced in the system’s
assurance case if it can somehow support the argumentation
about the system’s safety. In related work, we notice how
hazards, hazard analysis, test results or design components
are referenced in safety case fragments and patterns. As such,
one feature of ExplicitCase is the support for integrating the
assurance case metamodel with other AF3 metamodels.

a) Multiple hyperlinking: In several published assurance
case fragments or patterns a GSN node references multiple
artefacts of the same type (e.g., hazards, requirements etc.).
For example, one context claim within the SSR Identification
Pattern described by McDermid [11] references to multiple
requirements: SSRs relevant to design decisions are SSRs. As
such, we enable that a single assurance case element can
reference a list of AF3 native model elements of the same
type (e.g., a list of requirements).

b) Integration with different AF3 ”native” metamodels:
The user can annotate any assurance case model element with
references to any AF3 native model elements of different
types. For example, a goal can reference to both a requirement
and a component within the logical architecture. Furthermore,
we now enable referencing modes and mode automata, states
and components of logical and technical architectures.

Figure 3: Illustration of the integration feature.

c) Metamodel extension for hyperlinking: Any assurance
case element of type assumption, context, goal, justification,
solution and strategy can reference to a set of types of AF3
model element: requirements, logical architecture/logical com-
ponent, platform architecture/platform architecture component,
mode automaton/mode, state automaton/state, deployment. As
such, we extend the ArgumentElement class with correspond-
ing attributes. To enable references to artefacts in the claim
within a GSN node, each ArgumentElement has a Claim, as
defined in Section IV.

VI. CHANGE IMPACT ANALYSIS FOR ASSURANCE CASES

Artefacts can evolve during a system’s lifecycle (i.e., sys-
tem development phase and operational phase), undergoing
different types of changes. For example, a claim within the
assurance case model may be invalidated because of changing
requirements, additional safety evidence or a change in the
system architecture. As such, impact analysis is necessary to
guarantee that system safety and the corresponding argumen-
tation are not jeopardised. In ExplicitCase, given certain types



Figure 4: Illustration of the maintenance feature.

of changes in AF3 native model elements, the argumentation
nodes referencing these model elements are automatically
annotated as challenged (see Figure 8). Furthermore, we
implement the change impact analysis recommended by Kelly
and McDermid [7].

A. Metamodel Extension for Maintenance

To reason about the impact a change in the system artefacts
may have on assurance case elements, there is a need for an-
notating assurance case elements with maintenance metadata.
Therefore, in this work, we extend the assurance case meta-
model implemented in ExplicitCase such that maintenance
information can be specified for each of the assurance case
elements. The extension is based on the terminology proposed
in the work of Kelly and McDermid [7] (see Figure 4). As
such, we add to the ArgumentElement class a new attribute
named toBeMaintained, which depicts the type of affection of
a assurance case elements caused by a change - challenged,
potentially impacted or actually impacted. Furthermore, for
any assurance case element, we enable the specification of
types of changes that may affect the respective element, and
also the current list of changes that caused an element to
be annotated as needing maintenance. In the currentChanges
attribute we save the list of changes that determined that an
assurance case element needs maintenance. We specify a type
of change two-fold: the type of artefact that would undergo
the change and the type of the respective change. Examples of
types of changes may be: the addition, deletion or modification
of a system artefact or a modified claim.

B. Manual Maintenance Annotations

The user may manually annotate any GSN node as to be
maintained (i.e., challenged, potentially impacted or actually
impacted). As a visual aid, challenged nodes are depicted
in red, potentially impacted nodes in yellow and actually
impacted nodes in orange. Also, the user may optionally input
information regarding the change impacting the node, namely
he or she can reference the changed artefact (either AF3 native
model elements or external files) and select the change type
from a list of predefined types of changes. When the desired
change is not within the list, the user may also directly define
a new type of change. In the model, the change impacting

the node is added to the list of current changes affecting the
respective node. After the user deals with the impact of certain
changes on a node, he or she may select the changes whose
impact has been solved and delete them. The node will remain
to be maintained till the impact of all current changes have
been dealt with.

C. Computer-aided Maintenance Annotations

ExplicitCase supports the semi-automation of assurance
case maintenance. First, for a set of predefined types of system
changes, the tool offers automatic detection of challenges
within the assurance case. Second, the user may choose to
run an automatic impact analysis for detecting the potentially
impacted assurance case nodes, given a challenged node just
by pressing a button.

1) Computer-aided Identification of Challenges: For cer-
tain types of changes we enable the automatic detection of
challenged nodes. Whenever an artefact generated in AF3
undergoes a change, the assurance case elements referencing
it are automatically annotated as challenged, while also saving
the changed artefact and the type of change.

a) Changes in external files: When the path to an exter-
nal file referenced by an assurance case element is changed
- added, deleted or modified, the referencing assurance case
element are annotated as challenged. For example, the path
to the external file referencing test results may be modified,
meaning that the document may have been changed.

b) Changes in assurance case model elements: When
the claim within a assurance case element is modified, the
elements having a direct connection to the respective element
are annotated as challenged. For example, when the claim
of a goal is modified, its sub-goals may not be sufficient
anymore to satisfy it and therefore they shall be annotated
as challenged. When a node is deleted, depending on the type
of that node, the tool automatically does certain annotations.
Some of these annotations are not maintenance-specific an-
notations. For example, when a solution is deleted, the goals
supported by that solution are annotated as undeveloped. When
a goal is deleted, both its parent goal and its sub-goals are
annotated as challenged. The deletion of a strategy does not
challenge any nodes, but the goal supported by the respective
strategy is then directly connected with the strategy’s sub-
goals, or is marked as undeveloped, if the respective strategy
was undeveloped. When context, assumption, or justification
elements are deleted, the nodes directly connected to such
elements are annotated as challenged since, an argument is
only valid in a certain context. Therefore, when the context is
modified, the validity of the argument shall be rechecked.

c) Changes in AF3 native model elements: In Explicit-
Case, we support the automatic identification of the challenged
elements within an assurance case, given certain types of
changes within certain types of referenced AF3 native model
elements. When a reference is deleted or added, the refer-
encing assurance case element is annotated as challenged. We
assume that a change in the name or the id of an element does
not have an impact on the assurance case. Furthermore, we



support the automatic identification of challenges in assurance
cases for the following modifications:

• A modification in a requirement’s claim;
• A modification in a logical component - a port is deleted

or added or its state or mode automaton is modified;
• A modification in the logical architecture - a component

is added or deleted;
• A modification in a state or mode automaton - a

state/mode or a transition is added or deleted;
• A modification in the platform architecture - a node is

added or deleted;
• A modification in the allocation of logical components to

hardware nodes (e.g., a logical component is allocated to
another node).

D. Computer-aided Change Impact Analysis

We implemented in ExplicitCase the change impact analysis
proposed by Kelly and McDermid [7], which can detect all the
nodes potentially impacted by a challenge of a certain node.
The analysis will annotate the potentially impacted nodes (see
Figure 4, where the potential impact analysis for the chal-
lenged goal G5 is displayed). In our tool, the change impact
analysis does not go beyond the boarders of the argument
module containing the challenged element. While the potential
impact may be automatically computed, the actual impact is to
be determined only by a safety engineer. After the potentially
impacted nodes are correspondingly annotated, the safety
engineer can go through all of these claims and, depending
on the case, annotate them as either actually challenged or as
not impacted. For example, in Figure 4, context node C2 is
annotated as actually impacted.

VII. QUANTITATIVE CONFIDENCE ASSESSMENT

Recent works [12], [13], [8] have proposed mechanisms
for associating GSN-arguments with quantitative values. These
values are inspired by Dempster-Shafer Theories [14] contain-
ing three values for, respectively, the Belief, Disbelief, and
Uncertainty, and are used to denote the confidence level on
the safety of an item.

We implemented in AutoFOCUS the approach proposed
by Duan et al. [8], which computes the belief, disbelief and
uncertainty of a GSN-argument based on the safety defeaters.
A safety defeater is anything that can reduce the confidence
on the argument [12], such as, a software bug.

Consider the GSN-argument depicted in Figure 5. It con-
tains a main hazard which is broken down into two hazard
sub-goals. Each GSN goal is annotated with the number of
defeaters outruled and the total number of defeaters. In the
tool, this is shown by the pair of numbers on the top left
corner of GSN goals. For example, the top goal in Figure 5
is annotated with 15/29 denoting that 15 out of 29 safety
defeaters have been outruled. Users can only enter these
numbers for the leaf goals by editing their property sections, as
illustrated by Figure 6. Also, a weight denotes the importance
of these goal. From the data on the leaf nodes, the values of

Figure 5: Illustration of the quantitative evaluation of a GSN,
where b is for belief, d for disbelief, u for uncertainty, and w
for weight.

Figure 6: Illustration of the Safety Defeaters Property Section.

outruled and total defeaters for the remaining GSN nodes are
computed by a weight sum.

Intuitively, the greater the total number of defeaters, the
lower the uncertainty is. Moreover, the greater the number
of outruled defeaters the greater the belief on the GSN-
argument and the lower the disbelief. The exact values for
belief, disbelief and uncertainty can be computed from the
values of outruled and total number of defeaters. We refer to
the work [8], [15] on how exactly these values are computed.
One feature of the approach described in [8], not present in
the approach described in [13], is that a marginal increase on
the number of identified defeaters does not greatly affect the
values for belief, disbelief and uncertainty.

The belief, disbelief and uncertainty for the top most goal of
Figure 5 is shown by simply hovering the mouse over the goal
as illustrated by Figure 7. The color of the numbers shown in
the goal reflect the level of confidence. Red colors indicating
a higher disbelief, while a green color a higher belief.

Figure 7: Illustration of the Dempter-Schafer evaluation of a
GSN goal.



VIII. GENERATION OF SAFETY CASE REPORTS

GSN diagrams do not model the entire assurance case and,
as such, they do not replace all the documents within an
assurance case. Instead, they represent an abstract overview
of the argumentation and are included in other documents.
Therefore, there is a need to export the GSN diagrams created
in ExplicitCase into a format so that they can be easily
integrated in text-based documents as figures. Consequently,
we implement a new feature within our tool that allows the
user to export an assurance case or an argumentation module
diagram into SV G, pdf and png, and jpeg files, only by
pushing a button (see Figure 8).

Figure 8: Illustration of the exporting feature of a GSN
diagram.

IX. RELATED WORK

There is a large pallet of assurance case editor tools [4], each
supporting various functionalities. In this section, we discuss
how our tool differentiates itself from other tools.

Assurance case patterns. Not many tools support the cre-
ation and instantiation of GSN-based assurance case patterns.
While the Papyrus extension proposed by Huhn and Zech-
ner [16] implements the pattern extensions proposed in the
GSN standard [2], DCase [10] also implements typed patterns.
On the one hand, CertWare [17] provides an argumentation
pattern library. AdvoCATE [18], on the other hand, does
not only support specification of patterns, but also automated
pattern instantiation with data extracted from external sources.
Similar to DCase [10], ExplicitCase supports the creation and
instantiation of typed patterns.

Integration with system modeling tools. Tools like
MMINT-A [19], Resolute [20], ACCESS [21], HIP-HOPS [22]
Safety.Lab [23] and OpenCert [24] support integration of
assurance case models with system models. In MMINT-
A [19] the user can specify references to any type of system
models, while our assurance case models can only reference
AF3 native system models. Whereas Safety.Lab [23] enables
direct references from GSN-based elements to requirement and
hazard models, in ExplicitCase references to more types of
system models can be specified. However, in Safety.Lab [23]
the possible traces have semantics, meaning that the user is
constrained and even obliged to define certain types of traces

between elements. Other tools offer connections of assurance
case models with system models specified in different lan-
guages - in Resolute [20] and GAGE [25] assurance cases
may reference AADL models, whereas in HIP-HOPS [22]
and ACCESS [21] system models are specified in their own
defined specification language. To support the usage of system
elements out of context in different systems, the assurance
cases in OpenCert [24] can be integrated with system models
from CHESS tool.

Assurance case maintenance. A variety of tools offer some
kind of automatic support for assurance case maintenance.
ETB [26] supports maintenance of claims and evidence from
formal verification techniques. Tools like GAGE [25], Reso-
lute [20], Access [21] and MMINT-A [19] are similar to our
approach, since they support maintenance of assurance cases
given changes in referenced system models. In GAGE [25],
claim are formalized and their validity can be evaluated against
the AADL system models. Similar to our computer-aided
detection of challenged GSN nodes, in Resolute [20] the
claims invalidated by changes in system models are automat-
ically flagged, given that evidence in assurance cases directly
reference system design artefacts. In ACCESS [21], when
system models change, part of the assurance argumentation is
regenerated based on assurance case patterns. In contrast, most
similar to our approach, MMINT-A [19] proposes a change
impact analysis given changes in referenced system models.

Quantitative confidence assessment. Similar to our tool,
NOR-STA [27] uses Dempster-Shaffer theory to assess the
confidence engineers have in the argumentation claims. They
also offer different coloring for different degrees of confidence.
In contrast to our work, EviCA [28] quantifies confidence in
argumentation claims using Evidential Reasoning.

Generation of reports. NOR-STA [27], AdvoCATE [18]
and SafeEd support report generation. While SafeEd supports
the generation of natural language documentation and reports
for the assurance case - including quantitative assessments of
the assurance case (e.g., how many goals are undeveloped),
ExplicitCase currently only supports the export of the created
GSN-based argumentation diagrams.

Different tools offer different features. Only few tools,
such as NOR-STA [27], DCase [10] and AdvoCATE [18]
support almost all features our tool supports, whereas tools as
GAGE [25], Resolute [20], Access [21] and MMINT-A [19]
mainly focus on supporting integration with system models.
While being comparable with the features of state-of-the art
assurance case editors, in ExplicitCase features such as multi-
users or versioning are not available.

X. CONCLUSIONS

In this paper, we presented a set of novel features of
the ExplicitCase tool - a model-based assurance cases edi-
tor already presented in Cârlan et. al. [5]. First, we better
support assurance case creation by enabling users to create
and instantiate patterns for their assurance cases. Second, to
increase the tools’ support for maintenance, we implement an
automatic change impact analysis. Third, in addition to the



automatic syntactic checks of the assurance case, now the
user can quantitatively assess the assurance argumentation’s
confidence. Furthermore, the tool has been extended so that
the user can export the created GSN diagrams in different
file formats. Finally, the user can now connect any type of
safety case element to one or more AF3 native system model
elements of any type.

For validation, as future work, we plan on using the tool in
real-world projects to assess its scalability and applicability.
Also, we intend to further work on extending the tool as fol-
lows: 1) Modifying our current metamodel so that it is compli-
ant with the standardized Safety Assurance Case Metamodel;
2) Defining semantics for the references to AF3 native system
model elements; 3) Providing tool-support for identifying the
actual impact of certain types of system changes on selected
fragments of the safety case.

ACKNOWLEDGMENT

The research leading to these results is partially funded by
Collaborative Embedded Systems (CrEST) project, a project
funded by the German Federal Ministry of Education and
Research.

REFERENCES

[1] R. Bloomfield and P. Bishop, “Safety and assurance cases: Past, present
and Possible Future – an Adelard perspective,” in Making Systems Safer
- Proceedings of the Eighteenth Safety-Critical Systems Symposium.
London: Springer London, 2010, pp. 51–67.

[2] “GSN community standard version 1,” Nov. 2011. [Online]. Available:
http://www.goalstructuringnotation.info/documents/GSN\ Standard.pdf

[3] V. Aravantinos, S. Voss, S. Teufl, F. Hölzl, and B. Schätz, “Auto-
FOCUS 3: Tooling concepts for seamless, model-based development
of embedded systems,” in Proceedings of 8th International Workshop
for Model Based Architecting and Construction of Embedded Systems.
IEEE Computer Society, 2015, pp. 19–26.

[4] M. Maksimov, N. L. S. Fung, S. Kokaly, and M. Chechik, “Two
decades of assurance case tools: A survey,” in Proceedings of 37th
International Conference on Computer Safety, Reliability, and Security
- SAFECOMP Workshops, ser. Lecture Notes in Computer Science, vol.
11094. Springer, 2018, pp. 49–59.

[5] C. Cârlan, S. Barner, A. Diewald, A. Tsalidis, and S. Voss, “Explicitcase:
Integrated model-based development of system and safety cases,” in
Proceedings of 36th International Conference on Computer Safety,
Reliability, and Security - SAFECOMP Workshops, ser. Lecture Notes
in Computer Science, vol. 10489. Springer, 2017, pp. 52–63.

[6] S. Voss, B. Schätz, M. Khalil, and C. Cârlan, “Towards modular
certification using integrated model-based safety cases,” in Proceedings
of 25th International Conference on Computer Aided Verification -
Workshop on Verification Assurance, ser. Lecture Notes in Computer
Science, vol. 8044. Springer, 2013.

[7] T. P. Kelly and J. A. McDermid, “A systematic approach to safety
case maintenance,” in Proceedings of 18th International Conference on
Computer Safety, Reliability, and Security - SAFECOMP, ser. Lecture
Notes in Computer Science, vol. 1698. Springer, 1999, pp. 13–26.

[8] L. Duan, S. Rayadurgam, M. Heimdahl, O. Sokolsky, and I. Lee, “Repre-
sentation of confidence in assurance cases using the beta distribution,” in
Proceedings of 17th Conference on High Assurance Systems Engineering
Symposium - HASE. IEEE Computer Society, 2016, pp. 170–171.

[9] T. P. Kelly and J. A. McDermid, “Safety case construction and reuse
using patterns,” in Proceedings of 16th International Conference on
Computer Safety, Reliability and Security - SAFECOMP. Springer,
1997, pp. 55–69.

[10] Y. Matsuno, H. Takamura, and Y. Ishikawa, “A dependability case
editor with pattern library,” in Proceedings of 12th Conference on High
Assurance Systems Engineering Symposium - HASE. IEEE Computer
Society, 2010, pp. 170–171.

[11] J. A. McDermid, “Safety and dependability,” in Dependable Software
Systems Engineering, ser. NATO Science for Peace and Security Series,
D: Information and Communication Security. IOS Press, 2015, vol. 40,
pp. 128–169.

[12] L. Duan, S. Rayadurgam, M. P. E. Heimdahl, A. Ayoub, O. Sokolsky,
and I. Lee, “Reasoning about confidence and uncertainty in assurance
cases: A survey,” in Software Engineering in Health Care, M. Huhn and
L. Williams, Eds. Springer, 2017, pp. 64–80.

[13] R. Wang, J. Guiochet, and G. Motet, “Confidence assessment framework
for safety arguments,” in Proceedings of 36th International Conference
on Computer Safety, Reliability, and Security - SAFECOMP, ser. Lecture
Notes in Computer Science, vol. 10489. Springer, 2017, pp. 55–68.

[14] A. P. Dempster, “Upper and lower probabilities induced by a multivalued
mapping,” 1967.

[15] A. Jøsang, “A logic for uncertain probabilities,” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 9, no. 3,
pp. 279–212, 2001.

[16] M. Huhn and A. Zechner, “Analysing dependability case arguments
using quality models,” in Proceedings of 28th International Conference
on Computer Safety, Reliability, and Security - SAFECOMP, ser. Lecture
Notes in Computer Science, vol. 5775. Springer, 2009, pp. 118–131.

[17] M. R. Barry, “Certware: A workbench for safety case production and
analysis,” in Proceedings of Aerospace Conference. IEEE Computer
Society, 2011, pp. 1–10.

[18] E. Denney and G. Pai, “Tool support for assurance case development,”
Automated Software Engineering, vol. 25, no. 3, pp. 435–499, 2018.

[19] N. L. S. Fung, S. Kokaly, A. D. Sandro, R. Salay, and M. Chechik,
“MMINT-A: A tool for automated change impact assessment on as-
surance cases,” in Proceedings of 37th International Conference on
Computer Safety, Reliability, and Security - SAFECOMP Workshops,
ser. Lecture Notes in Computer Science, vol. 11094. Springer, 2018,
pp. 60–70.

[20] A. Gacek, J. Backes, D. D. Cofer, K. Slind, and M. Whalen, “Resolute:
an assurance case language for architecture models,” in Proceedings of
the 2014 ACM SIGAda annual conference on High integrity language
technology - HILT. ACM, 2014, pp. 19–28.

[21] X. Larrucea, A. Walker, and R. C. Palacios, “Supporting the management
of reusable automotive software,” IEEE Software, vol. 34, no. 3, pp. 40–
47, 2017.

[22] A. Retouniotis, Y. Papadopoulos, I. Sorokos, D. Parker, N. Matragkas,
and S. Sharvia, “Model-connected safety cases,” in Proceedings of
5th International Symposium for Model-Based Safety and Assessment -
IMBSA, ser. Lecture Notes in Computer Science, vol. 10437. Springer,
2017, pp. 50–63.

[23] D. Ratiu, M. Zeller, and L. Killian, “Safety.lab: Model-based domain
specific tooling for safety argumentation,” in Proceedings of 34th
International Conference on Computer Safety, Reliability, and Security
- SAFECOMP Workshops, ser. Lecture Notes in Computer Science, vol.
9338. Springer, 2015, pp. 72–82.

[24] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri, “Tool-supported
safety-relevant component reuse: From specification to argumentation,”
in Proceedings of 23rd Ada-Europe International Conference on Reli-
able Software Technologies, ser. Lecture Notes in Computer Science,
vol. 10873. Springer, 2018, pp. 19–33.

[25] S. Björnander, R. Land, P. Graydon, K. Lundqvist, and P. Conmy, “A
method to formally evaluate safety case arguments against a system
architecture model,” in 2nd edition of the IEEE Workshop on Software
Certification - WoSoCER. IEEE Computer Society, 2012.

[26] S. Cruanes, G. Hamon, S. Owre, and N. Shankar, “Tool integration with
the evidential tool bus,” in Proceedings of 14th International Conference
of Model Checking, and Abstract Interpretation - VMCAI, ser. Lecture
Notes in Computer Science, vol. 7737. Springer, 2013, pp. 275–294.

[27] J. Górski, A. Jarzebowicz, J. Miler, M. Witkowicz, J. Czyznikiewicz,
and P. Jar, “Supporting assurance by evidence-based argument services,”
in Proceedings of 31st International Conference on Computer Safety,
Reliability, and Security - SAFECOMP Workshops, ser. Lecture Notes
in Computer Science, vol. 7613. Springer, 2012, pp. 417–426.

[28] S. Nair, N. Walkinshaw, T. Kelly, and J. L. de la Vara, “An evidential
reasoning approach for assessing confidence in safety evidence,” in Pro-
ceedings of 26th IEEE International Symposium on Software Reliability

Engineering - ISSRE. IEEE Computer Society, 2015, pp. 541–552.


