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Abstract. Industry 4.0 (I4.0) refers to the trend towards automation and data ex-
change in manufacturing technologies and processes which include cyber-physical
systems, where the internet of things connect with each other and the environment
via networking. This new connectivity opens systems to attacks, by, e.g., injecting
or tampering with messages. The solution supported by standards such as OPC-
UA is to sign and/or encrypt messages. However, given the limited resources of
devices, instead of applying crypto algorithms to all messages in the network, it
is better to focus on the messages that if tampered with or injected, could lead to
undesired configurations.
This paper describes a framework for developing and analyzing formal executable
specifications of I4.0 applications in Maude. The framework supports the engi-
neering design workflow using theory transformations that include algorithms to
enumerate network attacks leading to undesired states, and to determine wrappers
preventing these attacks. In particular, given a deployment map from application
components to devices we define a theory transformation that models execution
of the application on the given set of (networked) devices. Given an enumeration
of attacks (message flows) we define a further theory transformation that wraps
each device with policies for signing/signature checking for just those messages
needed to prevent the attacks.

1 Introduction

Manufacturing technologies and processes are increasingly automated with highly in-
terconnected components that may include simple sensors and controllers as well as
cyber-physical systems and the Internet of Things (IoT) components. This trend is
sometimes referred to Industry 4.0 (I4.0). Among other benefits, I4.0 enables process
agility and product specialization. This increase of interconnectivity has also enabled
cyber-attacks. These attacks can lead to catastrophic events possibly leading to material
and human damages. For example, after an attack on a steel mill, the factory had to stop
its production leading to great financial loss [1].

A recent BSI report on the security of OPC-UA (machine to machine communi-
cation protocol for industrial automation) [7], points out that the lack of signed and
encrypted messages on sensitive parts of the factory network can lead to high risk at-
tacks. For example, attackers can inject or tamper with messages, confusing factory
controllers and ultimately leading to a stalled or fatal state. Given the limited bandwidth



and processing power of I4.0 elements, instead of signing all messages, it is much bet-
ter to only sign the messages that when not protected could be modified or injected
by an intruder to lead to an undesirable situation. This leads to the question of how to
determine critical communications.

This paper presents a formal framework for specifying I4.0 applications and ana-
lyzing safety and security properties using Maude [4]. The engineering development
process from application design and testing to systems deployment is captured by the-
ory transformations with associated theorems showing that results of analysis carried
out at the abstract application level hold for models of deployed systems.

Our key contributions are as follows:
– I4.0 Application Behavior: We present a formal executable model of the behavior of

I4.0 applications in the rewriting logic system Maude [4]. An application is composed
of interacting state transition machines which, following the IEC 61499 standard
[19], we call function blocks. Maude’s search capability is used to formally check
such applications for logical defects, which may lead to unsafe conditions.

– Bounded Symbolic Intruder Model: To evaluate the security of an application, we
formalize a family of bounded intruders parameterized by the number of messages
the intruder can inject. Our intruder can generate any clear text message, but can not
generate (or read) messages signed by honest devices. To reduce state space com-
plexity the intruder model is converted to one in which messages are symbolic and
are instantiated opportunistically according to what can be received at a given time.
Using search in the symbolic model all intruder message sets that can lead to a bad
state can be enumerated. Each such message defines a flow between two function
blocks that must be protected. Proof of the Intruder Theorem shows that the concrete
and symbolic intruder models yield the same attacks.

– Deployment transformation: The application model is suited to reason about func-
tionality and message flows, but does not support reasoning about resources and com-
munication issues that arise when function blocks run on different devices. We define
a theory transformation from an application executable specification to a specification
of a deployment of that application using a map from application function blocks to
a given set of devices. Proof of the Deployment Theorem shows that in the absence of
intruders, applications and their deployments satisfy the same function block based
properties. Proof of the Deployment Intruder Theorem shows that any bounded in-
truder attack at the system level can be found at already at the application level. Thus
one can carry out security verification at the application level as the results can be
transfered to deployed applications.

– Security Integrity Wrappers: Use of security wrappers is a mechanism to protect
communications [3]. Here it is used to secure message integrity between devices us-
ing signing. Since signing is expensive, it is important to minimize message signing.
We define a transformation from a specification of a deployed application to one in
which devices are wrapped with a policy enforcement layer where the policies are
computed from a set of message flows that must be protected as determined by the
enumeration of possible attacks. The proof of the Wrapping theorem shows that the
wrapping transformation protects the deployed system against identified attacks.
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We have implemented the framework and carried out a number of experiments
demonstrating analysis, deployment, and wrapping for variations of a PickNPlace ap-
plication. The Maude code along with documentation, scenarios, sample runs and a
technical report with details and proofs can be found at https://github.com/
SRI-CSL/WrapPat.git. An early version of the framework was presented in [14]
where we demonstrated the use of the search command to find logical defects and enu-
merate attacks, and proposed the idea of device wrappers. That paper contains a number
of experiments, including scalability results. The new contributions include the the-
orems and proofs, implementation of the deployment and wrapping functions, and a
simplified version of the symbolic intruder model.

Plan: Section 2 gives an overview of technical ideas and theorems, and describes a
motivating example, which will be used as a running example in the paper. Section 3
presents the formalization of our I4.0 framework and bounded attack model in Maude:
the application level, the deployment and security wrapper transformations, and theo-
rems characterizing the guarantees of the transformations. Section 4 discusses related
work, and Section 5 concludes with ideas for future work.

2 Overview

Threat Model We assume that devices have their pair of secret and public key. More-
over, that devices can be trusted and that a secret key is only known by its correspond-
ing device. However, the communication channels shared by devices are not trusted.
An intruder can, for example, inject and tamper with (unsigned) messages in any com-
munication channel. This intruder model reflects the critical types of attacks in Industry
4.0 applications as per the BSI report [7].

To protect communications between function blocks on different devices we use the
idea of formal wrapper [3] to transform a system S into a system, wrap(S,emsgs),
in which system devices are wrapped in a policy layer protecting communications be-
tween devices by signing messages and checking signatures on flows. Intuitively, a
security integrity wrapper enforces a policy that specifies which incoming events a de-
vice will accept only if they are correctly signed and which outgoing events should be
signed. By using security integrity wrappers it is possible to prevent injection attacks.
For example, if all possible incoming events expected in a device are to be signed, then
any message injected by an intruder would be rejected by the device. However, more
messages in security integrity wrappers means greater computational and network over-
head. One goal of our work is to derive security integrity wrappers, WR1, . . . ,WRn,
for devices, Dev1, . . . , Devn in which software, called function blocks, are to be ex-
ecuted, to ensure the security of an application while minimizing the number of events
that must be signed.

Figure 1 depicts the key components in achieving this goal with the inputs:
– Application (App): a set, {FB1, . . . , FBn}, of function blocks (FBs) and links,
Links between output and target input ports. An FB is a finite state machine similar
to a Mealy Machine. An App executes its function blocks in cycles. In each cycle,
the input pool is delivered to function block inputs and each function block fires one
transition if possible. The remaining inputs are cleared, the function block outputs
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Fig. 1. Methodology Overview

are collected, routed along the application links, and stored in the application input
pool.

– Bad State: a predicate (badstate) specifying which combined FB states should
be avoided, for example, states that correspond to catastrophic situations.

– Intruder Capabilities: The intruder is given a set of all possible messages deliver-
able in the given application. For up to n times the intruder can pick a message from
this set and inject it into the application input pool at any moment of execution.

We use a symbolic representation of intruder messages and Maude’s search capability
to determine which messages, called attack messages, that an intruder can inject to drive
the system to a bad state. Due to the finiteness of the FBs, applications either get stuck
or are periodic. Thus, due to Maude’s loop detection, the search is finite, as a search
path is interrupted whenever a state that has been visited is re-visited. Using reflection
and the search descent functions, we enumerate the critical events, i.e., injected message
sets leading to a bad state, given an application in a symbolic intruder environment.

Deploying an application is a theory transformation [13]. The function deployApp
takes an application and a deployment mapping from FBs to devices and returns a sys-
tem model that is the deployed version of the application corresponding to the mapping.

From the enumerated attack messages, we derive which flows between function
blocks on different devices need to have their events signed. Finally, from these flows,
we are able to derive the security integrity wrapper policies for a given mapping of
function blocks to devices.

Notice that we are able to capture multi-stage attacks, where the system is moved
to multiple states before reaching a bad state. This is done by using stronger intruders
that can use a greater number of messages.

Challenges To achieve our goal, we encounter a number of challenges.
– Challenge 1 (Deployment Agnostic): As pointed out above, the deployment of FBs

on devices can affect the security requirements of flows. Analysis at the system level
is more complex than at the application level. Thus it is important to understand how
analysis on the application level can be transferred to the system level.

– Challenge 2 (Symbolic Intruder): Our intruder possess a set of concrete messages
and a bound n on the number of injections. The search space grows rapidly with the
bound. To reduce the search space, the concrete messages and bound n is replaced by
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n distinct symbolic messages. The symbols are instantiated only when required. It is
important to understand the realtion of the symbolic model to the concrete model.

– Challenge 3 (Complete Set of Attack Messages): Given an intruder, how do we
know that at the end the set of attack messages found is a complete set for any de-
ployment?

– Challenge 4 (System Security by Wrapping): How do we know that the wrappers
constructed from identified flows and deployment mapping ensure the security of the
system assuming our threat model?

To address these challenges, we prove the following theorems:

Symbolic Intruder Theorem (Theorem 1) states that each execution of an application
A in a symbolic intruder environment has a corresponding execution of A in the concrete
intruder environment with the same bound, and conversely. Thus, using the symbolic
intruder is sound and complete with respect to the concrete intruder–enumeration of
attacks gives the same result in both cases. The key to this result is the soundness and
completeness of the symbolic match generation.

Deployment Theorem (Theorem 2) states that executions of an application A and a
deployment S of A are in close correspondence. In particular the underlying function
block transitions are the same and thus properties that depend only on function block
states are preserved.

System Intruder Theorem (Theorem 3) states that, letting A, S be as in the Deploy-
ment Theorem, (1) for any execution of S in an intruder environment there is a cor-
responding execution of A in that environment; and (2) for any execution of A in an
intruder environment that does not deliver any intruder messages that should flow on
links internal to some device, has a corresponding execution from S in that environ-
ment. Corresponding executions preserve attacks and FB properties. The condition in
part (2) is because internal messages are protected by the device execution semantics.

Wrapper Theorem (Theorem 4) Let A be an application, S a deployment of A, and
emsgs a set of messages containing the attack messages enumerated by symbolic
search with an n bounded intruder. The wrapper theorem says that the wrapped sys-
tem wrap(S,emsgs) is resistant to attacks by an n bounded intruder.

2.1 Example

Consider an I4.0 unit, called Pick and Place (PnP),4 used to place a cap on a cylinder.
The cylinder moving on the conveyor belt is stopped by the PnP at the correct location.
Then an arm picks a cap from the cap repository, by using a suction mechanism that
generates a vacuum between the arm gripper and the cap. The arm is then moved, so
that the cap is over the cylinder and then placed on the cylinder. Finally, the cylinder
with the cap moves to the next factory element, e.g., storage element.

An application implementing the PnP logic has three function blocks that commu-
nicate using the channels as shown in Figure 2. The controller, ctl, coordinates with
the vac and track function blocks as specified by the finite machine in Figure 2. For

4 See https://www.youtube.com/watch?v=Tkcv-mbhYqk starting at time 55 sec-
onds for a very small scale version of the PnP.
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Fig. 2. PnP Function Blocks, ctl, vac, and track. The internal states of vac and track are shown
in their corresponding boxes and their transitions are elided. The complete specification is shown
in the finite machine to the right.

example, after starting, it sends the message GoR to the Arm that then moves to the
right-most position where the caps are to be picked. When the Arm reaches this posi-
tion, it informs the controller by sending the message atR. The controller then sends
the message VacOn to the vac function block that starts its vacuum mechanism. If a
vacuum is formed indicating that a cap has been picked, vac sends the message on-
hasVac to the ctl. The controller then sends GoL to the track that then moves to the
left-most position where the cylinder is located on which the cap has to be placed. The
track sends the message atL. The controller then sends the message VacOff to the vac
to turn off the vacuum mechanism causing the cap to be placed over the cylinder.

For larger scale PnP, the hazard “Unintended Release of Cap” is catastrophic, for
example picking bricks rather than caps, as dropping a brick can hurt someone that is
near the PnP. By performing analysis, such as STPA (Systems-Theoretic Process Anal-
ysis), one can determine that this event can occur when The track function block is at
state mvL and the vac function block is in state on-noVac or in state off. This is be-
cause when starting to move to the position to the left, the gripper may have succeeded
to grab a cap. However, while the arm is moving, the vacuum may have been lost caus-
ing the cap to be released, i.e., the vac function block is in state on-noVac or off. An
intruder can cause such an event by injecting the message VacOff to the vac when the
arm is moving left, that is, in state mvL, while the gripper is holding something.

Following our methodology, shown in Figure 1, we feed to our Symbolic Model-
Checker the PnP function blocks, its bad state above, and a symbolic intruder that can
inject at most one message. One can specify stronger intruders, but this weak intruder
is already able to lead the system into a bad state. Indeed, from the model-checker’s
output, we find that there are four different attack messages. One of them is shown in
Figure 1, where the intruder impersonates the track and sends to the ctl a message atL
while the track is still moving.

From the identified attack messages we can see that messages in the flow from the
track to the ctl involving the message atL should be protected.

Finally, suppose track and ctl are deployed in dev1 and dev2, respectively, then the
computed security integrity wrapper on dev1 will sign atL messages, and the security
integrity wrapper on dev2 will check whether atL messages are signed by dev1. If track
and ctl are deployed on the same device, there is no need to sign atL messages as we
trust devices to protect internal communications.
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3 Formalization of the I4.0 framework in Maude

We now describe the formal representation of applications, and the deployment and
wrapping transformations. We formalize theorems. We describe the main structures,
operations, and rules using snippets from the Maude specification. Examples come from
the Maude formalization of the PnP application of Section 2.

3.1 Function blocks

An I4.0 application is composed of a set of interconnected interactive finite state ma-
chines called function blocks. A function block is characterized by its finite set of states,
finite sets of inputs and outputs, a finite set of possible events at each input or output,
and a finite set of transitions. We call this a class and we give FBs both an instance and
a class identifier to allow for multiple occurrences of a given class.

The Maude representation of a function block (FB) is a term of the form [fbId :
fbCid | fbAttrs], where fbId is the FB identifier, fbCid its class identifier and
fbAttrs is a set of attribute-value pairs, including (state : st), (oEvEffs :
oeffs), and (ticked : b), with state, oEvEffs, ticked being the attribute
tags, st the current state, oeffs a set of signals/events to be transmitted (out effects),
and b a boolean indicating whether the FB has fired a transition in the current cycle.

A transition is a term of the form tr(st0,st1,cond,oeffs)where st0 is the
initial state and st1 the final state, cond is the condition, and oeffs is the set of out-
puts. A condition is a boolean combination of primitive conditions (in is ev) spec-
ifying a particular event (ev) at input in. A transition tr(st0,st1,cond,oeffs)
is enabled by a set of inputs if they satisfy cond and the current state of the function
block state st0. In this case, the transition can fire, changing the function block state
to st1 and emitting oeffs.

Example FB. The FB with class id vac has states

st("off"), {st("on"), st("on-novac");

inputs

inEv("VacOn"), inEv("VacOff");

outputs

outEv("NoVac"), outEv("HasVac").

The initial state, vacInit(id("vac")), of an FB with class vac and identifier
id("vac") is

[id("vac") : vac | state : st("off") ; ticked : false ;
iEvEffs : none ; oEvEffs : none]

The function trsFB(fbCid) returns the set of transitions for function blocks of
class fbCid. trsFB(fbCid,st) selects the transitions in trs(fbCid) with ini-
tial state st. For example trsFB(vac, st("off")) returns three transitions
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tr(st("on"), st("off"), inEv("VacOff") is ev("VacOff"),
outEv("NoVac") :˜ ev("NoVac"))

tr(st("off"), st("on-novac"), inEv("VacOn") is ev("VacOn"),
outEv("NoVac") :˜ ev("NoVac"))

tr(st("off"), st("on"), inEv("VacOn") is ev("VacOn"),
outEv("HasVac") :˜ ev("HasVac"))

We compile a transition condition into a representation as a set of constraint sets
which simplifies satisfaction checking, and matching when messages are symbolic. We
can think of a constraint set (CSet) as a finite map from function block inputs to finite
sets of events. A set of inputs ieffs = {(ini B evi)|1 ≤ i ≤ k} satisfies a CSet,
css, just if css has size k, the ini form a set equal to the domain of css, and evi

is in css(ini) for 1 ≤ i ≤ k. The function condToCSet(cond) returns the set of
CSets such that an input set satisfies some CSet in the result just if it satisfies cond.
This is lifted to transitions by the function

tr2symtr(tr(st1,st2,cond,oeffs) =
symtr(st1,st2,condToCSet(cond),oeffs) .

For the vac example, the CSet

condToCSet( inEv("VacOn") is ev("VacOn"))

maps inEv("VacOn") to the singleton ev("VacOn").

3.2 Application structure and semantics

An application term has the form [appId | appAttrs]. Here appAttrs is a
set of attribute-value pairs including (fbs : funBs) and (iEMsgs : emsgs),
where funBs is a set of function blocks (with unique identifiers), and emsgs is the set
of incoming messages of the form {{fbId,in},ev}.

We use fbId, fbId0 . . . for FB identifiers, in/out for FB input/output connec-
tions, and ev for the event transmitted by a message. Terms of the form {fbId,in/out}
are called Ports. For entities X with attributes, we write X.tag for the value of the at-
tribute of X with name ‘tag’.

The initial state of the PickNPlace (PnP) application described in Section 2 is

[id("pnp") | fbs : (ctlInit(id("ctl")
trackInit(id("track")) vacInit(id("vac"))) ;

iEMsgs : {{id("ctl"),inEv("start")},ev("start")} ;
oEMsgs : none ; ssbs : none]

where the message {{id("ctl"),inEv("start")},ev("start")} starts the
application controller.

Links of the form {{fbId0,out},{fbId1,in}} connect output ports of one
FB to inputs of another possibly the same FB. They also connect application level in-
puts to FB inputs and FB external outputs to application level outputs. In a well formed
application, each FB input has exactly one incoming link. In principle the link set is
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an attribute of the application structure. In practice, since it models fixed ‘wires’ con-
necting function block outputs and inputs and does not change, to avoid redundant
information in traces, we specify a function appLinks(appId) which is defined in
application specific scenario modules.

As an example, here are the two links that connect vac outputs to controller inputs.

{{id("vac"),outEv("NoVac")}, {id("ctl"),inEv("NoVac")}}
{{id("vac"),outEv("HasVac")},{id("ctl"),inEv("HasVac")}}

Application Execution Rules. There are two execution rules for application behavior
and two rules modeling bounded intruder actions, one for the concrete case and one for
the symbolic case. To ensure that an FB fires at most one transition per cycle, each FB
is given a boolean ticked attribute, initially false, which is set to true when a
transition fires, and reset to false when the outputs are collected.

The rule [app-exe1] fires an enabled function block transition and sets the ticked
attribute to true.

crl[app-exe1]:
[appId | fbs : ([fbId : fbCid | (state : st) ;

(ticked : false) ; oEvEffs : none ; fbAttrs] fbs1) ;
iEMsgs : (emsgs0 iemsgs) ; ssbs : ssbs0 ; appAttrs ]

=>
[appId | fbs : ([fbId : fbCid | (state : st1) ;

(ticked : true) ; oEvEffs : oeffs ; fbAttrs] fbs1) ;
iEMsgs : iemsgs) ; ssbs : (ssbs0 ssbs1) ; appAttrs ]

if symtr(st,st1,[css] csss,oeffs) symtrs := symtrsFB(fbCid,st)
/\ size(emsgs0) = size(css)
/\({ssbs1} ssbss) := genSol1(fbId,emsgs0,css) .

The function genSol1(fbId,emsgs0,css) returns a set of substitutions, consist-
ing of all and only substitutions that match emsgs0 to a solution of the CSet, css. In
the case of concrete messages, i.e., not containing symbols, the function genSol1 just
returns an empty substitution if emsgs0 satisfies css. When rewriting, just one parti-
tion of iemsgs, one choice of (symbolic) transition, and one satisfying substitution is
selected. Search will explore all possible choices.

When [app-exe1] is no longer applicable (hasSol(fbs,iemsgs) is false),
[app-exe2] collects and routes generated output and prepares for the next cycle.

crl[app-exe2]: [appId | fbs : fbs ; iEMsgs : iemsgs ;
oEMsgs : oemsgs ; ssbs : ssbs ; attrs]

=> [appId | fbs : fbs2 ; iEMsgs : emsgs0 ;
oEMsgs : (oemsgs emsgs1) ; ssbs : ssbs ; attrs1]

if not hasSol(fbs,iemsgs)
/\ tick := notApp(attrs)
/\ not getTicked(attrs) --- avoid extracting when no trans
/\ attrs1 := setTicked(attrs, true)
/\ {fbs2,emsgs0,emsgs1} :=

extractOutMsgs(tick,fbs,none, none,none,appLinks(appId)) .
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The function extractOutMsgs removes outputs from the function blocks that fired
and routes them using appLinks(appId) to the linked FB input or application out-
put. Application level inputs are accumulated in emsgs0 and outputs are accumulated
in emsgs1. The ticked attribute of each FB is set to the value of tick. In the case of a
basic application, this will be false indicating the FB is ready for the next cycle. When
the application level execution rules are used in a larger context, (notApp(attrs) is
true), extractOutMsgs ensures that each FBs ticked attribute is true, allowing
further message processing before repeating the execution cycle. If the application has
a ticked attribute, it is set to true, to indicate it has completed the current cycle. fbs2
collects the updated function blocks.

3.3 Intruders

An application A in the context of an intruder is represented in the concrete case by a
term of the form [A, emsgs, n] where emsgs is a set of specific messages (typi-
cally all the messages that could be delivered) and n is the number of injection actions
remaining. The rule [app-intruder-c] (omitted) selects one of the candidate mes-
sages, injects it, and decrements the counter.
An application A in the context of a symbolic intruder is represented by a structure
of the form [A, smsgs] where smsgs are symbolic intruder messages of the form
{{idSym,inSym},evSym} (idSym, inSym, evSym are symbols standing for func-
tion block identifiers, inputs, and events respectively). We require different messages to
have distinct symbols. The rule [app-intruder] selects one of the intruder mes-
sages, and moves it from the intruder message set to the incoming messages iEMsgs.

rl[app-intruder]:
[[appId | fbs : fbs ; iEMsgs : emsgs0 ; attrs], emsg emsgs]
=>
[[appId | fbs : fbs ; iEMsgs : (emsgs0 emsg) ; attrs], emsgs] .

We note that this rule works equally well with concrete or symbolic messages, allow-
ing one to explore consequences of injecting specific messages. Using genSol1, a
symbolic message can be instantiated to any deliverable message. Also, if a message is
injected after all function blocks have been ticked and before [app-exe2] is applied,
it will be dropped by [app-exe2], since function block inputs are cleared before
collecting the next round of inputs.

3.4 The Intruder Theorem

We define the following correspondence between symbolic and concrete intruder states:
[A,smsgs] ∼ [A,cmsgs,n] holds only if
– size(smsgs) = n,
– As.fbs = Ac.fbs, and
– (As.iEMsgs)[ssbs] = Ac.iEMsgs
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for some symbol substitution ssbs.5 Two rule instances correspond if they are in-
stances of the same rule. Also, in the [app-exe1] case the instances are the same
transition of FBs with the same identifier, and in the [app-exe2] case the instances
collect the same outputs.

An execution trace is an alternating sequence of (application) states and rule in-
stances connecting adjacent states as usual. A symbolic trace TrS from [A,smsgs]
and a concrete trace TrC from [A,emsgs,n] correspond just if they have the same
length and the ith elements correspond as defined above.

Theorem 1. Let [A,smsgs] ∼ [A,cmsgs,n] be corresponding initial application
states in symbolic and concrete intruder environments respectively, where no intruder
messages have been injected.

If TrS is an execution trace from [A,smsgs] then there is a corresponding exe-
cution trace TrC starting with [A,cmsgs,n] and conversely.

Proof. By induction on trace length. The base case is simple in either direction, since
an intruder message is only involved if the rule is an app-intruder rule. Let

TrS = TrS0 → [Ask,smsgsk]− rlk → [Ask + 1,smsgsk+1]

be an execution trace from [A,smsgs]. By induction, let

TrC0(pmsgs)→ [Ack,cmsgs, nk]

be the set of corresponding concrete traces from [A,cmsgs,n] where pmsgs are pa-
rameters for delayed choices of injected concrete messages that remain in iEMsgs
(have been injected and not delivered or cleared), thus were injected since the last
[app-exe2] rule. If rlk is an instance of [app-exe1] then

Ask.iEMsgs = iemsgs = iemsgs0 emsgs0

and the function block with identifier fbId has a transition delivering emsgs0[ssbs].
Let iemsgs0 = iemsgs00 iemsgs01 and emsgs0 = emsgs00 emsgs01
where iemsgs00, emsgs00 are concrete and iemsgs01, emsgs01 are symbolic.
By the correspondence

Ack.iEMsgs = iemsgs00 ipmsgs01 emsgs00 pmsgs01

where ipmsgs01 pmsgs01 are the injection message parameters such that the fol-
lowing equations are satisfied:

size(pmsgs01) = size(emsgs01) size(ipmsgs01) = size(iemsgs01)

Ack can deliver the same messages to the same function block. Let pmsgs01 =
emsgs01[ssbs]. We extend TrC by a applying of [app-exe1] to

[Ak+1,pmsgs00] = [Ack[pmsgs01 = emsgs01[ssbs]],cmsgs, nk].

5 Note that the attributes ssbs and oEMsgs do not affect rule application.
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For rlk an instance of [app-exe2] or the intruder rule it is easy to see that TrC
extends to a corresponding trace.

Conversely, let

TrC = TrC0 → [Ack,cmsgsk, nk]− rlk → [Ack+1,cmsgsk+1, nk+1]

be a concrete trace. By induction let TrS0 → [Ask,smsgsk] be a corresponding sym-
bolic trace. If rlk is an instance of crl[app-exe1] then

Ack.iEMsgs = iemsgs = iemsgs0 emsgs0

and function block with identifier fbId has a transition delivering emsgs0. Let ssbs
be a substitution such that Ask.iEMsgs = iemsgs’ = iemsgs0’ emsgs0’ and
emsgs0’[ssbs] = emsgs0. By ‘completeness’ of genSol1, ssbs will be a so-
lution generated by genSol1 and

[Ask,smsgsk]− rlk → [Ask+1,smsgsk] [Ack+1,cmsgsk+1, nk+1]

extending TrS0 to TrS corresponding to TrC. If rlk is an instance of [app-exe2]
or an intruder rule it is easy to see that TrS0 extends as desired.

Corollary 1. Search using the symbolic intruder model for paths reaching a badState
finds all successful (bounded intruder) attacks.

We define the function getBadEMsgs([A,smsgs]) that returns the set of in-
jected message sets that lead to badState. This function uses reflection to enumerate
search paths reflecting the command

search [A,smsgs] =>+ appInt:AppIntruder
such that badState(appInt:AppIntruder) .

Injected symbolic messages are determined by looking for adjacent states where the
symbolic message set decreases. The symbols of injected messages that were actually
delivered are in the domain of the value of the sbss attribute of the final state.

In the PnP application for an intruder with a single message, getBadEMsgs re-
turns four attack message sets

{{{id("ctl"),inEv("HasVac")},ev("HasVac")}}
{{{id("ctl"),inEv("atL")},ev("atL")}}
{{{id("track"),inEv("GoL")},ev("GoL")}}
{{{id("vac"),inEv("VacOff")},ev("VacOff")}}

Recall from Section 2 that the PnP application state satisfies badState if the track
FB is in state st("mvL"), presumably carrying something from right to left, and the
vac FB is in an off state (st("on-novac") or st("off")).

12



3.5 Deploying an Application

Once an application is designed, the next step is determining how to deploy FBs on de-
vices. We model deployment as a theory transformation, introducing a data structure to
represent deployed applications, called Systems, extending the application module with
rules to model system level communication elements, and defining a function mapping
applications to their deployment given an assignment of FBs to host devices.

A deployed application is represented in Maude by terms of the form: [sysId
| appId | sysAttrs] where sysAttrs is a set of attribute-value pairs includ-
ing (devs : devs) and (iMsgs : msgs). devs is a set of devices, and msgs
is a set of system level messages of the form {srcPort,tgtPort,ev} where
srcPort/tgtPort are terms of the form {devId, {fbId, out/in}}.

A device is represented as an application term with additional attributes including
(ticked : b) which indicates whether all FBs have had a chance to execute. The
function blocks of the application named by appId are distributed amongst the devices.
The function sysMap(sysId) maps each FB identifier to the identifier of the device
where the FB is hosted. Each device has incoming/outgoing ports corresponding to
links between its function blocks and function blocks on other devices.

The function deployApp(sysId,A,sysMap(sysId)) produces the deploy-
ment of application A as a system with identifier sysId and FBs distributed to devices
according to sysMap(sysId).

ceq deployApp(sysId,app,idmap) =
mkSys(sysId,getId(app),devs,msgs)

if emsgs := getIEMsgs(app)
/\ devs := deployFBs(getFBs(app),none,idmap)
/\ msgs := emsgs2imsgs(sysId,emsgs,idmap,none) .

The real work is done by the function deployFBs(fbs,none,idmap) which cre-
ates an empty device for each device identifier in the range of idmap (setting iMsgs
to none and ticked to true). Then each FB (identifier fbId) of app is added to
the fbs attribute of the device identified by idmap[fbId].

Note that the deployApp function can be applied to any state Ak in an execution
trace from A. A system Sk can be abstracted to an application by collecting all the device
FBs in the application fbs attribute, collecting the iEMsgs attributes of devices into
the iEMsgs attribute of the application and adding system level input messages to the
iEMsgs attribute of the application (after conversion to application level).

The execution rules for applications apply to devices in a system. There are two
additional rules for system execution: [sys-deliver] and [sys-collect].
The rule [sys-deliver] delivers messages associated to the iMsgs attribute. The
rule requires isDone to hold of the system devices, which means all the devices have
their ticked attribute set to true. The target port of a system level message identifies
the device and function block for delivery.

The rule [sys-collect] collects and distributes messages produced by the ap-
plication level execution rules. It collects application level output messages from each
device and converts them to system level output messages. Messages from device
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iEMsgs attributes are split into local and external. The local messages are left on the
device, the external messages are converted to system level input messages.

We define a correspondence between execution traces from an application A, and a
deployment S = deployApp(sysId,A,idmap) of that application. An applica-
tion state A1 corresponds to a system state S1 just if they have the same function blocks
and the same undelivered messages. (Note that the deployment and abstraction opera-
tions are subsets of this correspondence relation.) An instance of the [app-exe1] rule
in an application trace corresponds to the same instance of that rule in a system trace
(fires the same transition for the same function block). An instance of [app-exe2]
in an application trace corresponds to a sequence

app-exe2+;sys-collect;sys-deliver

in a system trace collecting and delivering corresponding messages.

Theorem 2. Let A be an application and S = deployApp(sysid,A,idmap) be a
deployment of A. Then A and S have corresponding executions.

Proof. This is a direct consequence of the definition of corresponding traces.

Corollary 2. A and S as above satisfy the same properties that are based only on FB
states and transitions. This is because corresponding traces have the same underlying
function block transitions.

Intruders at the system level Deployed applications are embedded in an intruder en-
vironment analogously to applications. We consider a simple case where the intruder
has a finite set of concrete messages to inject, using it to show that any attack at the sys-
tem level can already be found at the application level. A system in a bounded intruder
environment is a term of the form [sys,msgs] where sys is a system as above, and
msgs is a finite set of system level messages. The deployment function is lifted by

deployAppI(sysId,[A,emsgs],idmap) =
[deployApp[sysId,A,idmap],deployMsgs(emsgs,appLinks(A),idmap)]

where deployMsgs transforms application level messages {fbport,ev} to system
level, {srcdevport,tgtdevport,ev} using the link and deployment maps.

The intruder injection rule, [app-intruder], is lifted to [sys-intruder]
and the correspondence relation of the deployment theorem is lifted in the natural way
to the intruder case.

Theorem 3. Assume Ai = [A,emsgs] where A is an application in its initial state
(no intruder messages injected) and Si = deployAppI(sysId,Ai,idmap).

1. If TrS is a trace from Si then there is a corresponding trace from Ai.
2. If TrA is a trace from Ai that delivers no intruder messages that flow on links internal

to a device, then there is a corresponding trace from Si.
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Proof. The proof is the same as for the correspondence of an application and its de-
ployment. The additional condition in part 2 is needed because a device protects com-
munications between FBs it hosts by having no port for delivery of such messages. In
particular, if all the FBs are hosted on a single device then no intruder messages can be
delivered.

Corollary 3. If a badState is reachable from Si then sys2app(msgs) is an ele-
ment of getBadEMsgs([A,smsgs]) where size(smsgs) = size(msgs).

3.6 Wrapping

Towards the goal of signing only when necessary (Section 2) we define the transforma-
tion wrapApp(A,smsgs,idmap) of deployed applications as:

wrapSys(deployApp(sysId,A,idmap),flatten(getBadEMsgs([A,smsgs])))

where flatten unions the sets in a set of sets. wrapSys(S,emsgs) wraps the devices
in S with policies for signing and checking signatures of messages on flows defined by
emsgs as described below.

A wrapped device has input/output policy attributes iPol/oPol used to control the
flow of messages in and out of the device. An input/output policy is an iFact/oFact
set where an iFact has the form [i : fbId ; in, devId] and an oFact has
the form [o : fbId ; out]. If [i : fbId ; in, devId] is in the input
policy of a device then a message {{fbId,in}, ev} is accepted by that device only
if ev is signed by devId, otherwise the message is dropped. Dually, if [o : fbId ;
out] is in the output policy of a device, then when a message {{fbId,out}, ev}
is transmitted ev is signed by the device. Following the usual logical representation
of crypto functions, we represent a signed event by a term sg(ev,devId), assuming
that only the device with identifier devId can produce such a signature, and any device
that knows the device identifier can check the signature.

The function wrapSys(S,emsgs) invokes the function wrap-dev to wrap each
of its devices, S.devs. In addition to the device, the arguments of this function in-
clude the set of messages, emsgs, to protect, the application links and the deployment
map. The links determine the sending FB, and the deployment determines the send-
ing/receiving devices. If these are the same, no policy facts are added. Otherwise, policy
facts are added so the sending device signs the message event and the receiving device
checks for a signature according to the rules above.

ceq wrap-dev(dev,{{fbId,in},ev} emsgs,links,idmap,ipol,opol)
= wrap-dev(dev,emsgs,links,idmap,(ipol ipol1), (opol opol1))

if {{fbId0,out},{fbId,in}} links0 := links
/\ devId1 := idmap[fbId]
/\ devId0 := idmap[fbId0]
/\ devId1 =/= devId0 ---- not an internal link
/\ devId := getId(dev)

**** if emsg sent from dev add opol to sign outgoing
/\ opol1 := (if devId == devId0
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then [o : fbId0 ; out ]
else none
fi)

**** if emsg rcvd by dev, require signed by sender devId0
/\ ipol1 := (if devId == devId1

then [i : fbId ; in, devId0]
else none
fi) .

eq wrap-dev(dev,emsgs,links,idmap,ipol,opol) =
addAttr(dev,(iPol : ipol ; oPol : opol)) [owise] .

Theorem 4. Assume A is an application, allEMsgs is the set of all messages de-
liverable in some execution of A, and smsgs is a set of symbolic messages of size
n. Assume badState is not reachable in an execution of A, and emsgs contains
flatten(getBadEMsgs([A,smsgs])).

1. Let wA = [wrapSys(deployApp(sysId,A,idmap),emsgs]. Every exe-
cution from wA has a corresponding execution from A and conversely. In particular
badState is not reachable from wA.

2. badState is not reachable from

wAC = [wrap(deploy(A,idmap),emsgs),allEMsgs,n]

Proof 1. The proof is similar to the proof of the deployment theorem part 1, noting that
by definition of the wrap function, any message in emsg will be signed by the sending
device and thus will satisfy the receiving device input policy and be delivered in the wA
trace as it will in the A trace.
Proof 2. Assume badState is reachable from wAC. Let wAC rl0 . . . rlk wACk+1 be a
witness execution where badState holds of wACk+1. By the assumption on A from
part 1, at least one intruder message must have been delivered.

Let {emsg1 . . .emsgl} be the intruder messages delivered in the trace, say by rules
rlj1 . . . rljl . None of these messages are in emsgs since their events cannot be signed
by one of the devices, and thus would not satisfy the relevant input policy. Thus there
is a corresponding trace from the unwrapped system

AC = [deploy(A,idmap),allEMsgs,n]

and by the Deploy Intruder Theorem there is a corresponding trace from [A,allEMsgs,n]
reaching a badState. But emsgs contains all messages that are part of an intruder
message set which if injected can cause badState to be reached. A contradiction.

4 Related Work

There are a number of recent reports concerning the importance of cybersecurity for
Industry 4.0. Two examples are the German Federal Office for Information Security
(BSI) commissioned report on OPC UA security [7], and the ENISA study on good
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practices for IoT security [6]. OPC Unified Architecture (OPC UA) is a standard for
networking for Industry 4.0 and includes functionality to secure communication. The
BSI commissioned report describes a comprehensive analysis of security objectives
and threats, and a detailed analysis of the OPC UA Specification. The analyses are
informal but systematic, following established methods. A number of ambiguities and
issues were found in this process. The ENISA report provides guidelines and security
measures especially aimed at secure integration of IoT devices into systems. It includes
a comprehensive review of resources on Industry 4.0 and IoT security, defines concepts,
threat taxonomies and attack scenarios. Again, systematic but informal.

Although there is much work on modeling cyber physical systems and cyber-physical
security (see [12] for recent review), much of it is based on simulation and testing. The
formal modeling work focuses on general CPS and IoT not on the issues specific to I4.0
type situations. Lanotte et al. [10] propose a hybrid model of cyber and physical sys-
tems and associated models of cyber-physical attacks. Attacks are classified according
to target device(s) and timing characteristics. Vulnerability to a given class is assessed
based on the trace semantics. A measure of attack impact is proposed along with a
means to quantify the chances of success. The proposed model is much more detailed
than our model, considering device dynamics, and is focussed on traditional control sys-
tems rather than IoT in an Industry 4.0 setting. The attacks on devices modeled include
our injection attacks. The Lanotte et. al. work is complementary to ours, while being
more detailed we suspect our more abstract model combined with symbolic analysis is
more scalable. The work in [16] relates to our work in proposing a method using model-
checking to find all attacks on a system given possible attacker actions. The authors do
not propose mitigations. SOTERIA [2] is a tool for evaluating safety and security of in-
dividual or collections of IoT applications. It uses model-checking to verify properties
of abstract models of applications derived automatically from code (of suitable form).
It requires access to the application source code.

The idea of using theory transformations to relate the application, system level spec-
ifications and reduce many reasoning problems to reasoning at the application level is
based on the notion of formal patterns reviewed in [13]. An early example of wrapping
to achieve security guarantees is presented in [3] to mitigate DoS attacks.

5 Conclusions and Future Work
This paper presents a formal framework in rewriting logic for exploring I4.0 (smart
factory) application designs and a bounded intruder model for security analysis. The
framework provides functions for enumerating message injection attacks, and generat-
ing policies mitigating such attacks. It provides theory transformations from application
specifications to specifications of systems with application components executing on
devices, and for wrapping devices to protect against attacks using the generated poli-
cies. Theorems relating different specifications and showing preservation of key prop-
erties are given. We believe that formal executable models can be valuable to system
designers to find corner cases and to explore tradeoffs in design options concerning the
cost and benefits of security elements.

Future work includes theory transformations to refine the system level model to a
network model with multiple subnets and switches, adding timing and modeling con-
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straints induced by use of the TSN network protocol. As in our previous work [8], we
are investigating the complexity of security properties given intruder models weaker
than the traditional Dolev-Yao intruder [5]. We are also considering increasing the ex-
pressiveness of function block specifications to include time constraints as in [9] to
automate the verification of properties based on time trace equivalence [15], such as pri-
vacy attacks. Finally, since these devices have limited resources, they may be subject to
DDoS attacks. Symbolic verification can be used to check for such vulnerabilities [18].

Another important direction is developing theory transformations for correct-by-
construction distributed execution [11]. This means accounting for real timing consid-
erations and network protocols, and identifying conditions under which application and
system level properties are preserved. An important use of the framework that we intend
to investigate is relating safety and security analyses and connecting formal analyses to
the engineering notations used for safety and security.

We are also currently extending our implementation to support the automated ex-
ploration of mappings of function blocks to devices. In particular, we are investigating
the extension of [17] to take into account security objectives in addition to device per-
formance limitations, device capabilities, and deadlines.
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