
Automating Safety Proofs about Cyber-Physical
Systems using Rewriting Modulo SMT

Vivek Nigam2,3 and Carolyn Talcott1

1 SRI International, Menlo Park, USA, clt@csl.sri.com
2 Federal University of Paraíba, João Pessoa, Brazil, vivek.nigam@gmail.com

3 Huawei Munich Research Center, Germany

Abstract. Cyber-Physical Systems, such as Autonomous Vehicles (AVs),
are operating with high-levels of autonomy allowing them to carry out
safety-critical missions with limited human supervision. To ensure that
these systems do not cause harm, their safety has to be rigorously ver-
ified. Existing works focus mostly on using simulation-based methods
which execute simulations on concrete instances of logical scenarios in
which systems are expected to function. The level of assurance obtained
by these methods is, therefore, limited by the number of simulations that
can be carried out. A complementary approach is to produce, instead,
proofs that vehicles are safe for all instances of logical scenarios. This
paper investigates how Rewriting modulo SMT applied to Soft Agents,
a rewriting framework for the specification and verification of Cyber-
Physical system, can be used to generate such proofs in an automated
fashion. In particular, rewrite rules specify the executable semantics of
systems on logical scenarios instead of concrete scenarios. This is ac-
complished by generating at each execution step a set of (non-linear)
constraints whose satisfiability are checked by using SMT-solvers. Intu-
itively, a model of such set of constraints corresponds to a concrete exe-
cution on an instance of the corresponding logical scenario. We demon-
strate how to specify and verify scenarios in this framework using an
example involving a vehicle platoon. Finally, we investigate the trade-
offs between how much of the verification is delegated to search engines
(namely Maude) and how much is delegated to SMT-solvers (e.g., Z3).

1 Introduction

Autonomous Vehicles (AVs) are expected to soon reach higher-levels of auton-
omy, being able to drive through complex environments with no or little human
supervision. To achieve this, however, it is necessary to produce a rigorous safety
assurance argument [12]. An assurance strategy based on collecting data by run-
ning AVs on the streets is not feasible [13] as it would require billions of miles of
data for achieving confidence in the results. Symbolic methods based on formal
models have been advocated [24] as a means for safety assurance.

A safety assurance strategy begins by first identifying abstract scenarios,
called logical scenarios [19], such as lane changing or platooning or pedestrian
crossing, in which AVs have to avoid harm. These logical scenarios contain details

about the situations in which a vehicle shall be able to safely operate,4 such as
which types and number of actors, e.g., vehicles, pedestrians, operating assump-
tions, e.g., range of speeds, and road topology, e.g., number of lanes. The system
safety is then verified with respect to each scenario. The challenge, however, is
that there are infinitely many instances for any given logical scenario.

To overcome this challenge, existing work can be divided into two different
approaches. The first approach [9,16,5] is to use simulation-based methods that
run a sufficiently large number of simulations using vehicle simulators [8]. A
limitation of this approach is that a possibly large number of simulations need
to be generated for each logical scenario, and even then critical situations may
be missed. The second approach is to use algorithms [23,1] that are proved
to generate safe trajectories under the assumption that the remaining agents
behave correctly. These safe planners can then be integrated with advanced
(high-performance, but not safe) controllers as fall-back options whenever safety
assurance is low [7]. There are two limitations with this approach. The first
limitation is that safety proofs have to be constructed manually. The second
limitation is that these proofs consider only planning and not other aspects such
as sensing, knowledge bases, and communication channels that are used in AV
applications [5,16].

This paper’s main goal is to address the limitations of these two types of
approaches by proposing a rewriting framework, based on Soft Agents [25], that
enables the automated construction of vehicle level safety proofs, i.e., produce
proofs that AVs are safe for all instances of a logical scenario. Such safety proofs
provide greater confidence on the safety of AVs, complementing other verification
evidence such as simulation-based verification techniques.

Towards achieving this goal, we make the following contributions:
– Soft Agents Framework with Rewriting Modulo SMT: We propose an

executable symbolic Soft Agents framework [25] where instead of considering
concrete values for attributes such as agent’s speed, position and acceleration,
it represents these values as symbols whose possible values are specified by
a set of (real non-linear) constraints. This is accomplished by extending the
current Soft Agents framework with Rewriting Modulo SMT [21]. Soft Agent
specifications can be executed by using Maude extensions with SMT [14]. In
contrast to existing frameworks that can execute only instances of logical sce-
narios, symbolic soft agents can execute logical scenarios producing symbolic
traces, each denoting a possibly infinite number of concrete executions of the
logical scenario.

– Vehicle Platooning Specification: We demonstrate the Soft Agent frame-
work by using a simple, but realistic vehicle platooning application. We il-
lustrate how vehicle behavior and safety properties can be specified in Soft
Agents, explaining how design choices may affect verification performance.

– Verification Trade-off between Rewriting and Constraint Solving:
For the verification of systems, Soft Agents make uses of rewriting (through
Maude [4]) and of SMT-solvers (through Z3 [6]). In particular, rewriting cap-

4 Also called Operational Design Domain (ODD).

2

vl, αlvf, αf
vehf vehl

posf posldist

Fig. 1. Platooning Logical Scenario: The follower vehicle vehf and vehl are in a
straight lane with respectively velocities and accelerations vf , αf and vl, αl. posf
is the position of front of vehfand poslis the position of the back of the vehl.
We consider vehicle positions to be only the x-component increasing with as
one follows to the right direction of the road. The distance between the vehicles
dist = posl − posf .

tures the evolution of the system by accumulating constraints. The constraint-
solver, on the other hand, generates proofs that a property is satisfied or that
a property is unsatisfiable. We investigate in this paper the trade-offs be-
tween how much of verification is delegated to rewriting and how much to the
constraint-solver. On the one hand, the more fine grained is the rewriting, e.g.,
searching with more constrained system evolutions, the greater is the number
of states the search engine has to traverse leading to a greater number of calls
to the SMT-solver, but the simpler are the problems that the solver has to
solve. On the other hand, the more coarse is the rewriting, e.g., searching with
less constrained system evolutions, the fewer are the calls to the SMT-solver,
but the larger are problems that the constraint solver has to solve. Our exper-
iments indicate that these trade-offs need to be considered in order to verify
more challenging properties.

Plan. We start in Section 2 by describing a motivating example: a logical sce-
nario from a vehicle platooning case study, which is used as running example.
Section 3 introduces symbolic rewriting, then recalls the soft agents framework
and its generalization to to symbolic rewriting with SMT solving. Section 4
presents key elements of the symbolic vehicle platooning logical scenario, in-
cluding control decisions, safety properties, and search patterns for reachability
analysis. Section 5 presents experiments evaluating trade-offs between size of
search space and complexity of constraints to solve. We conclude by discussing
related work in Section 6 and future work in Section 7.

2 Motivating Example

Our motivating example is a platooning scenario which is a typical Level 3
autonomy5 use-case. This scenario takes place in a highway as illustrated by
Figure 1. The vehicle vehf , called follower vehicle, follows autonomously, i.e.,

5 For the levels of autonomy, see the SAE classification described in [11]

3

only with human supervision, vehicle vehl, called leader vehicle. The vehicles are
driving in a highway lane and therefore are expected to have a speed within
some given range of values normally obtained by considering legal speeds and
the vehicle’s capabilities, e.g., speeds between 60km/h and 130km/h. Moreover,
the acceleration (and deceleration) capabilities of the vehicles are also bounded,
typically between −8m/s2 and 2m/s2.

The goal of the follower vehicle is to maintain a safe distance to the leader
vehicle, but still be close enough to profit from the wind shadow of the leader
vehicle yielding upto 17% of fuel savings [27]. Since the speed of the vehicles
may vary, it is not appropriate to define a safe distance as an absolute quantity,
but in terms of time to react. That is, the distance will depend on the relative
speeds of the vehicles.

As an example, building on ideas from [7], we define the following three
properties for the platooning logical scenario:

Psafer := dist ≥ vf × (1[s] + gapsafer)− vl × 1[s], (1a)
Psafe := vf × (1[s] + gapsafer)− vl × 1[s]) > dist ≥ vf × (1[s] + gapsafe)− vl × 1[s],

(1b)

Punsafe := dist < vf × (1[s] + gapsafe)− vl × 1[s] (1c)

Intuitively, their satisfaction is conditional on the distance (dist) between the
vehicles; their speeds (vl and vf); and the parameters gapsafer and gapsafe which
are time to react parameters, typically a few seconds. Moreover, gapsafer > gapsafe,
which means that the instance of a logical scenario satisfies Psafer (or simply safer)
if the vehicles vehl and vehf have a greater distance between them. Finally, an
instance of a logical scenario satisfies Punsafe (or simply unsafe) if distance is to
small to satisfy Psafe or Psafer.

A description of the function of a vehicle, such as platooning, using formal
notations and ranges of parameters is called a logical scenario [15]. The objective
is to prove that an implementation of a controller for the platooning function
is safe, that is either Psafer or Psafe is satisfied for all concrete instances of this
logical scenario. This is challenging as there are infinitely many such instances.

3 Symbolic Soft Agents Framework

We begin with an overview of challenges in modeling cyber-physical systems
(CPSs), then recall the main features of soft agent specifications, and then briefly
discuss the generalization to symbolic form.

3.1 Overview

A soft agent (SA) model of a CPS makes explicit both discrete changes (cyber
actions, control settings) and continuous change (in the physical environment).
Following ideas developed in Real Time Maude [18], soft agent models have
instantaneous rules that specify agents decision processes that generate actions

4

such as communication or setting control parameters; and a timeStep rule that
models the passage of some interval of time, updating the state according to a
model of the time-dependent aspects of the state.

In contrast to the usual realtime specifications, soft agent CPS specifications
involve variables, such as speed, distance, etc, that are dense and their evolutions
over time are not discrete events. Moreover, system properties, such as safety
properties, are expressed using these variables, e.g., keeping a given distance
to the vehicle ahead rather than timing properties such as network delay or
execution time. Verification of safety properties for CPS specifications involves
reasoning about possibly infinitely many states and properties whose parameters
may change continuously over time.

Two challenges for safety analysis of CPS specifications are (1) soundness
of discrete time sampling execution; and (2) checking for reachability of unsafe
states from a possibly infinite set of instances of a logical scenario. Challenge
(1) includes choosing the timestep intervals small enough so that no unsafe
situations are missed, while not being so fine grained that the state space becomes
unmanageable. This is a design time concern, for example choosing the frequency
with which sensors are read and control settings are updated. The latter challenge
(2) involves the coverage and state space management with time properties.

Real Time Maude addresses (1) in [17], defining conditions on a timed rewrite
theory that guarantee soundness and completeness of model checking based on
maximal time elapsed discrete time sampling. Unfortunately, soft agent analysis
problems generally do not meet these conditions. Narrowing is one approach to
checking reachability from a possibly infinite initial set of system states. Maude
supports narrowing modulo a rich collection of equational theories, but narrow-
ing using conditional rules is not supported [4], and soft agent relies heavily on
conditional rules.

New ideas are needed to address the verification challenges. We propose a
form of symbolic rewriting that combines rewriting and constraint solving.
1. We represent logical scenarios as symbolic system states, representing a set of

concrete states. A logical scenario consists of a pattern (a term with pattern
variables called symbols) together with a set of constraints on values of the
symbols.6

2. A symbolic rewrite rule introduces new symbols and additional constraints
representing new values of the pattern variables. The resulting logical scenario
represents the instances reachable from instances of the starting pattern using
the rewrite rule.

3. Symbolic rule conditions use symbolic function evaluation to generate new
symbols and their constraints.
The point of symbolic analysis is to check properties of concrete systems

represented by concrete scenarios. Thus we want to connect symbolic executions
to concrete executions. The concrete executions may be obtained from a concrete

6 Mathematically, a logical scenario is a term with variables. To be able to rewrite
logical scenarios in Maude, we replace variables by symbols, which formally are
uninterpreted constants.

5

form of the rewrite rules, or simply using the symbolic rules with grounding
constraints of the form, sym == ground term.

To describe the desired symbolic-concrete connection, we need a little nota-
tion. The basic idea is analogous to that presented in [20]. We assume a rewrite
theory T = (Σ,B ∪ E,R) with signature Σ, axioms B, equations E, and rules
R. Assume further an equational subtheory T0 of T axiomatizing the theory in
which the constraints are solved by the SMT solver. We use sS, sS0, sS1 to
denote logical scenarios (symbolic states) and cS, cS0, cS1 . . . to denote concrete
states (ground states with no symbols). Let σ, σ0, σ1, . . . denote substitutions
mapping symbols to concrete terms (values). A logical scenario is structured as
a pair (sP, sC) consisting of a pattern, sP, and a constraint, sC, on the symbols
of sP. sC represents a quantifier free formula in the language of T0.

Application of a substitution, σ, to a logical scenario, sS = (sP, sC) (written
(σsP)), gives an instance of sS if the domain of σ contains all the symbols of sS
and σ satisfies sC (T0 |= sCσ). We say σ1 extends σ0, written σ1 � σ0 if the
domain of σ1 contains the domain of σ0 and σ0(v) = σ1(v) (wrt. T) for v in the
domain of σ0. Finally, we let −→c denote the concrete rewrite relation induced by
T , and −→s denote the symbolic rewrite relation induced by T . Then the desired
connection between the rewrite relations is give by the following Soundness and
Completeness properties. These correspond to Theorems 1 and 2 of [20] and can
be proved by analogous arguments.

Soundness. If sS0 −→s sS1 and σ0 gives an instance of sS0, then there exists
σ1 � σ0 such that cS1 is equivalent (in T) to sP1σ1 and and σ0(sP0) −→c cS1.

Completeness. If σ0 gives an instance of sS0 and σ0(sP0) −→c cS1 then there
exists sS1, and σ1 � σ0 such that σ1 gives an instance of sS1 with cS1 equivalent
to σ1(sP1) and sS0 −→s sS1 where σ1 gives an instance of sS1.

3.2 The structure of Soft Agent Rewriting

In soft agents, a system state consists of a set of agent terms together with a
unique environment term. Abstractly an agent term has the form A(id,attrs)
where id is the agent identifier, and attrs is a set of named attributes including
the agents local knowledge base (local KB), and a set of pending tasks and
actions each labeled by the time until ready for execution. An environment term
has the form E(ekb) where ekb is a knowledge base representing the physical
state of the system and contextual information such as location of features or
bounds on location.

There are two rewrite rules: doTask and timeStep. The doTask rule has the
form

crl[doTask]: A(id,attrs) E(ekb) => A(id,attrs’) E(ekb) if taskConds

where taskConds has clauses for reading sensors from the environment, evalu-
ating possible actions, and updating the local KB, pending tasks, and actions.
The timeStep rule has the form

6

crl[timeStep]: A(id1,attrs1) ... A(idk,attrsk) E(ekb) =>
A(id1,attrs1’) ... A(idk,attrsk’) E(ekb’) if stepConds

where stepConds has a clause to execute ready actions (with time delay 0) and
update time-dependent symbols to capture the passing of time. There are also
clauses to update time parameters (clocks, delays...), transmit messages, and
share knowledge amongst the agents. Executing actions affects parameters that
control how the physical state evolves (change of acceleration, direction, on/off
switches . . .). Passing time lets the physical model run for the specified interval
of time, updating the physical state (position, energy level, . . .) according to
laws parameterized by the control settings.

3.3 Symbolic Soft Agent Rewriting

To enable symbolic execution of soft agent specifications we abstract system
states as terms of the form SA[uu] SE[vv] where SA is a pattern with symbols
uu whose structure captures the state aspects that are not changed during ex-
ecution, for example the number of agents, their ids, attribute names, and any
persistent structure in attribute values. Similarly, SE[vv] is a pattern, with sym-
bols vv capturing the persistent structure in the environment knowledge base.
uu and vv are disjoint lists of symbols. For example, in a platooning scenario,
symbols in vv would represent values including the position, acceleration, and
velocity of each vehicle. Mathematically, we represent the symbolic constraint
as a separate state component. In practice, we represent it as an element of the
environment knowledge base.

Intuitively, the execution of a logical scenario constructs new constraints con-
taining fresh symbols representing new values of the system’s physical attributes.
As for (concrete) soft agents, there are two rewrite rules for symbolic soft agents.
At the framework level, the symbolic rules are obtained by replacing the clauses
in the rule conditions of concrete rules by symbolic versions that refer to sym-
bolic versions of the functions involved. It is the job of the specifier to define
these symbolic functions and their symbolic evaluation equations. In the vehicle
platooning case, symbolic functions were obtained by systematically transform-
ing the original concrete versions. In the next section we give examples of key
elements of the symbolic vehicle platooning system.

4 Vehicle Specifications

This section details how one can specify logical scenarios including safety prop-
erties by specifying the vehicle platooning example described in Section 2. While
the specifications below are declarative, i.e., closely resemble textbook formulas,
we do assume that the reader is familiar with the Maude syntax [4]. Our start-
ing point is a concrete specification of the vehicle platooning described in [5]. It
contains several features, such as vehicle controllers and communication proto-
col specifications, which have been ported to the symbolic machinery described

7

below. The complete code can be found at https://github.com/SRI-CSL/
VCPublic.git in the folder symbolic-platooning. To execute this code you
will need the Maude integration with Z3 which can be found at [14].

4.1 Basic Symbolic Sorts

RealSym is the sort of real values. It contains concrete values, i.e., real numbers,
or symbols of the form vv(i) or vv(i,str) where i is a Nat uniquely identifying
a symbol and str is a string describing the intuitive meaning of the symbol, used
for improved readability. The term mkNuVar(i,id,str) evaluates to a (fresh)
symbol with identifiers id,str, where id is an agent identifier and str is a string
with a short description of the fresh symbol.

Example 1. The following symbols represent the initial conditions for the fol-
lower ag1, namely, its position, speed, maximum acceleration, maximum decel-
eration, and initial acceleration.

eq v1posx = vv(2,"ag1-positionX") . eq v1posy = vv(3,"ag1-positionY") .
eq v1vel = vv(5,"ag1-speed") . eq maxacc1 = vv(9,"ag1-maxAcc") .
eq maxdec1 = vv(10,"ag1-maxDec") . eq acc1 = vv(32,"ag1-acc") .

SymTerm is the sort of symbolic terms containing arithmetic expressions con-
structed inductively using basic arithmetic operators (e.g., addition, subtraction,
division, multiplication) and elements of RealSym. They are used to specify con-
straints of sort Boolean involving symbols.

Example 2. The following constraint using the symbols in Example 1 specifies
that ag1’s acceleration is bounded by the maximum acceleration and decelera-
tion: (acc1 <= maxacc1) and (acc1 >= maxdec1)

4.2 Knowledge Specifications

Cyber-physical systems reason using knowledge about their locations, speeds,
direction, and accelerations and of the surrounding objects. Such knowledge is
represented using a sort Info. Knowledge base elements are of the form info @
t where t is a logical time, i.e., the number of time steps since the beginning.

Vehicle locations are two-dimensional, speeds are real values, and directions
are vectors specified using two locations and a magnitude:

op loc : SymTerm SymTerm -> Loc .
op speed : Id RealSym -> Info .
op dir : Id Loc Loc SymTerm -> Info .

Example 3. The agent ag1’s initial knowledge base, that is, at logical tick 0,
contains the following terms, specifying its initial position, speed, acceleration
and direction:

(at(ag1,loc(v1posx,v1posy)) @ 0) (speed(ag1,v1vel) @ 0)
(accel(ag1,acc1) @ 0)
(dir(v(1),loc(v1ix,v1iy),loc(v1tx,v1ty),v1mag) @ 0)

8

https://github.com/SRI- CSL/VCPublic.git
https://github.com/SRI- CSL/VCPublic.git

Based on the above notation, we can specify symbolically typical definitions,
such as the distance between two locations:

op ldist : Nat Loc Loc -> NatSymTermBoolean .
eq ldist(i,loc(x0,y0),loc(x1,y1))
= {s(i),vv(i,"dist"), (vv(i,"dist") >= 0/1) and

vv(i,"dist") * vv(i,"dist") === ((y1 - y0) * (y1 - y0) +
(x1 - x0) * (x1 - x0)) } .

This definition creates a fresh symbol, vv(i,"dist") together with the con-
straint specifying the Euclidean distance. Notice that we need to specify that
the distance is a non-negative value. Similar specifications can be made for other
distance measures, such as, Manhattan distance.

The following operator specifies how an agent’s location, loc(x,y), is up-
dated to loc(nuVarX,nuVarY) given an (average) speed, spd, and a direction.

op upVLoc : Nat Id Loc SymTerm Info -> NatLocBoolean .
ceq upVLoc(i,id,loc(x,y),spd,dir(id,loc(x0,y0),loc(x1,y1),mag))
= {i + 2,loc(nuVarX,nuVarY),cond}
if nuVarX := mkNuVar(i,id,"-positionX")
/\ nuVarY := mkNuVar(i + 1,id,"-positionY")
/\ cond1 := (x0 === x1) and (not (y0 === y1)) and

(nuVarX === x) and (nuVarY === y + spd)
/\ cond2 := (not (x0 === x1)) and (y0 === y1) and

(nuVarX === x + spd) and (nuVarY === y)
/\ cond3 := (not (x0 === x1)) and (not (y0 === y1)) and

(nuVarX === (x + spd * (x1 - x0) / mag)) and
(nuVarY === (y + spd * (y1 - y0) / mag))

/\ cond := cond1 or cond2 or cond3 .

We made some design choices in this definition. The first design choice is to split
it into three different cases. The first case (cond1) is when the agent is moving
vertically, the second case (cond2) horizontally, and the third case (cond3) when
it is moving in the quadrant. In this way we help the constraint solver to avoid
to solve the harder non-linear constraint involved in the third case whenever the
agent is moving only along the x-axis and only along the y-axis. The second
design choice was to include the magnitude in the definition of dir which may
seem redundant as it can be specified from the two associated locations. However,
by doing so, we avoid the need to generate fresh symbols and new constraints
whenever the magnitude is needed as in the third case of upVLoc.

Finally, we also capture symbolically the fact that the physical system is
continuous while the cyber part of the system works in logical ticks. The size
of the tick is specified by the term tickSize(dt), where dt is symbol denoting
the size of the tick. Typically it is fixed during the whole execution by using a
constraints, e.g., dt === 1/10, specifying a tick duration of 100ms. We assume
here for simplicity that all agents use the same tick duration. However, agents
with different tick duration can also be specified. When the soft agent machinery
updates the agent’s positions using upVLoc it scales accordingly the speed to the
tick size by multiplying the speed with dt.

9

4.3 Soft-Constraint Controller

Agents decide which action to take based on their local knowledge base, which
is updated by reading their sensors, and taking into account different concerns,
such as safety and efficiency. For vehicle platooning, as described in detail in [5],
there are two main concerns, safety, i.e., maintaining a safe distance between
vehicles, and fuel-efficiency, i.e., maintaining a distance between vehicles that is
not too great.

The controller is specified in a similar way to the knowledge functions de-
scribed above by using existing symbols, creating new symbols, and using con-
traints to determine its possible values.

The following equation specifies the controller evaluation to rank the possible
actions that the vehicle can take from a safety perspective. In particular, it takes
as input i, for creating fresh symbols, vmin,vmax, respectively, the minimum
and maximum speeds that the vehicle is allowed to use, vminD,vmaxD, the min-
imum and maximum desired speeds according to the safety parameters (gapsafe,
gapsafer), and the constraints cond on the existing symbols. It then returns a
range of speeds that are safe specified by the interval between the fresh sym-
bols vv(i)and vv(i + 1). However, the concrete values for vv(i),vv(i + 1)
depend on the relation between the possible speeds (vmin,vmax) and the desired
speeds vminD,vmaxD as detailed by the constraints cond11,cond21,...,cond61.

ceq symValSpeedRed(i,str,vmin,vmax,vminD,vmaxD,cond) =
{i + 2, [vv(i),vv(i + 1),nuCond and cond]}
if cond1 := vmin >= vmaxD
/\ cond11 := vv(i) === vmin and

vv(i + 1) === ((vmin + vmax) / 2/1) and cond1
/\ cond2 := vmax <= vminD
/\ cond21 := vv(i) === ((vmin + vmax) / 2/1)

and vv(i + 1) === vmax and cond2
...
/\ cond6 := vmin >= vminD and vmax < vmaxD
/\ cond61 := vv(i) === vmin and vv(i + 1) === max and cond6
/\ nuCond := (cond11 or cond21 or cond31 or cond41 or cond51 or cond61) .

In the definition above, the effort of determining which condition applies is del-
egated to the constraint solver. As we will investigate in Section 5, this will lead
to great performance penalties.

An alternative way to expressing the same controller is to return six possi-
bilities as specified by the following equation, rather than the single disjunction
nuCond:

ceq symValSpeedRed-Split(i,str,vmin,vmax,vminD,vmaxD,cond) =
{i + 2, [vv(i),vv(i + 1),cond11 and cond]}
{i + 2, [vv(i),vv(i + 1),cond21 and cond]}
...
{i + 2, [vv(i),vv(i + 1),cond61 and cond]}

if cond1 := vmin >= vmaxD
...
/\ cond61 := vv(i) === vmin and vv(i + 1) === vmax and cond6.

10

With this new definition the choice of which condition is applicable is left to the
search engine, i.e., Maude.

A similar choice occurs when specifying how the time advancement affects
agent’s speeds. Several cases occur due to the fact that logical scenarios assume
that vehicle’s speeds are bounded. For example, depending on the tick duration,
current speed and maximum acceleration, an agent’s speed may reach the max-
imum speed or not before completing a logical tick. For analyzing the impact of
delegating such enumeration of cases to the SMT-solver or to the search engine,
we implemented two versions of time advancement: timestep that returns one
output with a constraint with a disjunct for each case, as in symValSpeedRed;
and timestep-split that returns several outputs, one for each possible case as
symValSpeedRed-split.

4.4 System Configurations

As described in Section 3, a system configuration of sort ASystem is a collection
of agent configurations and an environment configuration.

An agent configuration has the form [id : class | attrs], where id is
the agent’s unique identifier, class is its class, e.g., vehicle, and attrs are its
attributes which include its local knowledge base written lkb : kb, where lkb
is a label and kb is the local knowledge base contents.

An environment configuration has the form [eId | ekb] where ekb is the
environment knowledge base which specifies state of the world. The environment
knowledge base contains the knowledge item constraints(i,cond) where i is
the current index of fresh variables, and cond is the constraints (accumulated)
on the existing symbols.

Example 4. The initial configuration of a platooning scenario described in Sec-
tion 2 is as follows:

asysI = { [eid | (kb constraint(i,condI))]
[v(0) : veh | lkb : kb0] [v(1) : veh | lkb : kb1] }

where kb is the environment knowledge base specifying among other things, the
vehicles’s actual locations and speeds, while kb0 and kb1 are the vehicle v(0)
and v(1)’s local knowledge bases. The constraint condI contains the constraints
on these values as per the logical scenario. It contains for example constraints
on the acceleration of vehicles (see Example 2) and the following constraints:

(v1vel >= vellb1) and (v1vel <= velub1) and (v0posy > v1posy)

which specify that the follower vehicle’s speed is bound within the bounds vellb1
and velub1. Moreover, the following vehicle v(1) is behind the leader v(0).

Notice that such a symbolic system configuration may correspond to infinitely
many concrete system configuration, i.e., concrete instances of the specified pla-
tooning scenario.

11

4.5 Safety Properties

We are interested in generating proofs regarding the safety of logical scenarios,
such as the one specified in Example 4. The specification of safety property is
formalized using the operator:

op mkSPCond : SP ASystem -> SPSpec .

This function takes a property (an identifier in SP) and a system configuration,
and returns a safety property of sort SPSpec of the form:

op {_,_,_,_} : Nat SymTerms Boolean Boolean -> SPSpec .

The first element is the new symbol index, the second is the new (auxiliary) sym-
bols created for specifying the property, which are then constrained by the third
element. The last element specifies the safety property based on the auxiliary
symbols and the previously existing symbols in the given system configuration.

For example, the first safety property in Eq 1b is specified as follows:

ceq mkSPCond(saferSP, { conf env }) = {k + 1,dis,cond00,nucond}
if [id0 | kb] := env
/\ (atloc(v(0),l0) @ t0) (atloc(v(1),l1) @ t1)

(speed(v(0),v0) @ t2) (speed(v(1),v1) @ t3)
(gapSafety(v(1),gapSafer,gapSafe)) (constraint(n,cond)) kb1 := kb

/\ {k,dis,cond00} := ldist(n,l1,l0)
/\ nucond := (dis >= ((1/1 + gapSafer) * v1) - v0) .

Notice the use of the function ldist that creates the auxiliary fresh symbol dis.
Using mkSPCond, we specify an operator (definition elided)

op enforceSP : SP ASystem -> ASystem .

For example, enforce(saferSP,asysI) returns a configuration in which the
conditions (cond00 and nucond from mkSPCond) are added to the set of con-
straints. This means that the resulting configuration will only have instances
asysI that satisfy the saferSP. The term isSatModel(enforce(saferSP,asysI))
calls the SMT-Solver and returns an assignment for asysI symbols:

ag0-positionX |-> (0/1).Real, ag0-positionY |-> (1/1).Real
ag1-positionX |-> (0/1).Real, ag1-positionY |-> (0/1).Real,
ag0-speed |-> (7/1).Real, ag1-speed |-> (2/1).Real,
ag1-safer |-> (3/1).Real

This state satisfies the saferSP property for a gapsafer of value 3.

4.6 Verifying Logical Scenarios

We can now use Rewriting Modulo SMT [21] to verify and effectively generate
safety proofs of the specifications above in an automated fashion. Consider the
following search:

12

search enforceSP(safeSP,setStopTime(asysI,2)) =>*
asys such that checkSP(unsafeSP,asys) .

No solution. states: 63 rewrites: 394686 in 20134ms

It attempts to find any instance of system configuration asys that satisfies
unsafeSP (see Eq. 1c) starting from any instance of asysI that satisfies property
safeSP. Moreover, the term setStopTime(asysI,2) specifies that the search is
bound to two logical ticks, i.e., search stops after two tick rules. The search
engine combined with the SMT-solver can generate proofs that no instance of
reachable states are unsafe. However, as shown Section 5, the complexity of the
problem greatly increases when considering larger logical tick bounds.

5 Trade-offs Between Rewriting and Constraint Solving

The verification of logical scenario involves rewriting and constraint solving.
Rewriting enumerates possible system states while the constraint solver attempts
to check the satisfiability of constraints. As demonstrated in Section 4.3, how
much of verification is delegated to rewriting and how much to the constraint
solver can be adjusted by leaving the non-determinism in the constraints, e.g.,
by placing disjunctions in the constraints, or to the rewriting, e.g., returning
instead for each disjunct an output, a rewriting choice.

Delegating verification to the rewriting engine means that the search tree is
larger leading to more calls to the SMT-solver, but each call involves simpler
constraints to solve, i.e., with less disjunctions and therefore less cases to con-
sider. Delegating verification to the constraint solver, on the other hand, means
a smaller search space traversed by the rewriting engine leading to less calls to
the constraint solver, but with more complex constraints.

To demonstrate this, we considered three cases according to the specifications
described in Section 4.3:
– More SMT Less Search: This case uses symValSpeedRed for the controller

and timestep for the time step evolution. This means that all cases are speci-
fied as disjunctions in the constraint that will need to be solved by the solver.

– Less SMT More Search: This case uses symValSpeedRed-split for the
controller and timestep-split for the time step evolution. This means that
all cases are specified as different outputs that need to be traversed by the
rewriting engine.

– Balanced: This case uses symValSpeedRed for the controller and the speci-
fication timestep-split for the time step evolution. This means that some
cases are specified as constraints and others as outputs.
To evaluate the different cases, we executed the command:

search enforceSP(safeSP,setStopTime(asysI,Bound)) =>! asys
such that isSat(asys) .

which enumerates all the reachable symbolic configurations that are satisfiable
exactly in Bound time ticks, i.e., number of applications of the timeStep rule.

13

Time Bound Pruning More SMT Less Search Balanced Less SMT More Search

2
No 19/20.4s 71/2.5s 1427/29.7s
Tick 19/32.4s 63/8.3s 497/47.4s
All 19/56.0s 63/11.6s 296/52.7s

3
No DNF DNF 42827/3054s
Tick DNF DNF 2484/3412s
All DNF DNF 1976/5238s

Table 1. Experiments with the Platooning Logical Scenario Verification. DNF
denotes that the experiment was aborted after 5 hours. The experiment results
are expressed as states/time, where states is the total number of states in the
search tree and time is the time needed to traverse all states. The experiments
were carried out in a 2.2 GHz 6-Core Intel Core i7 machine with 16 GB memory.

A second dimension that we investigated was on the way we can prune the
search tree. We considered the following cases:
– All Pruning: At each rewrite rule for doTask, which evaluates an agent’s

actions, and tick, which applies the agent’s actions, we placed a check whether
the resulting configuration is satisfiable. This means that the search tree has
only satisfiable configurations with the price of calling the SMT-Solver at each
step.

– No Pruning: As opposed to the All Pruning case, rewrites doTask nor tick
did not check the satisfiability of the resulting configuration. The check was
made only at the configuration resulting from applying the number to ticks
specified by the bound. This means that the search tree is not pruned, and
therefore, more states are traversed.

– Tick Pruning: The third case does a check on the configuration resulting
from timeStep rewrites, but not on doTask. In this way, we still prune the
search tree without calling the SMT-solver at each rewriting step.
Table 1 summarizes our experiments with these scenarios using bounds of two

and three cs. The best case was not pruning the tree and delegating verification
to the search tree when considering greater time bounds. The balanced case had
better results when considering lower time bounds.

Interestingly, pruning the tree, while had a great effect on number of states,
it did not improve the time required to traverse the tree. We believe that this can
be further improved if the search engine uses the SMT-solver in a more clever
way, in particular, using its incremental solving features. This would allow the
solver to re-use work done in previous calls.

6 Related Work

Existing work for the verification of autonomous cyber-physical systems can be
divided into three different approaches.

14

The first approach [9] is to use simulation-based methods that run a suffi-
ciently large number of simulations using simulators [8]. A main advantage of
this approach is that it can be used to verify the actual artifacts, e.g., machine
learning artifacts, used in applications and rely on vehicle simulators to generate
very complicated and high-fidelity scenarios. However, as already mentioned, as
each simulation is run using a concrete instance of a logical scenario, a limitation
of this approach is that possibly a large number of simulations need to be gener-
ated for each logical scenario. Our work complements this work by enabling the
specification and verification of vehicle behavior using symbolic methods cov-
ering all instances of a logical senario, and enables early verification of designs
before expensive artifacts are built.

The second approach is to use safe controllers [23,1] that are guaranteed
to generate safe trajectories under the assumption that the remaining agents
behave correctly. A limitation of this type of work is that it focuses only on
individual functions, typically control algorithms without taking into account
other functions needed for AVs, e.g., sensing, knowledge bases, and communica-
tion channels. As shown in [7], safe controllers can be integrated with advanced
(high-performance, but not safe) controllers as fall-back options whenever safety
assurance is low. In particular, a formal framework for Run Time Assurance
(RTA) is presented, and conditions are given that, if satisfied by a safe con-
troller and associated monitor, guarantee that integration with an untrusted
control maintains safe operation. The paper leaves open methods to verify that
a controller satisfies its RTA requirements. Our work has been greatly inspired
by [7] and the result is complimentary. Symbolic rewriting combined with SMT
solving provides automated methods to verify correctness of time sampling mech-
anisms and safety requirements.

The third approach [16,26,18], similar to the non-symbolic Soft Agents, are
formal frameworks that enable the specification and verification of other func-
tions, besides trajectory planning [10,5]. However, as with the first approach, the
evidence that can be produced by these frameworks is based on running simu-
lations or model checking concrete scenario instances. Therefore, it also suffers
the limitation that a large number of simulations need to be carried out, or a
large sample of senario instances must be model checked.

The Soft Agent execution strategy is based on the Real Time Maude max-
imal time elapse (MTE) execution strategy for real time theories [18]. In [17]
two conditions for soundness and completeness of model checking Real Time
Maude specifications based on the MTE execution strategy are given. The first
condition, time robustness, is a property of the rewrite theory. It requires that
timesteps of any duration are allowed, and a timestep can be subdivided without
changing the end result. The second condition requires that atomic propositions
are stable with respect to time: at most one change during a time step. These
conditions hold for a wide range of Real Time Maude specifications, timing
of protocols, network performance, or discrete events used for defining system
behavior of, e.g., manufacturing plants. SA specifications are concerned with
physical properties of a system such as bounds on distance, change of position,

15

use of resources to express both safety and goal satisfaction properties. SA spec-
ifications are time robust, but the properties of interest are generally not stable
with respect to time. Thus, we can not directly use the Real Time Maude results.
Work is in progress to define an analog to stability for system properties that
evolve over time.

A formal mathematical foundation for symbolic rewriting modulo SMT is
presented in [20]. Our work is essentially a mapping of these ideas to be exe-
cutable in Maude with an integrated SMT solver. The soft agents doTask rule
is not technically topmost, but could easily be modified to be topmost without
changing any behavior in our examples. Also, the theory T has non-axiom equa-
tions that are not in T0 These equations define functions is a straight forward
way, so they do not cause a problem for our symbolic rewriting but may challenge
narrowing. Our logical scenarios are ground terms from Maude’s perspective and
correspond to terms whose only variables have builtin sorts (in T0). On the other
hand, search starts with terms that possibly have non builtin variables in [20].
Generating new symbols to update values plays a similar role to the fresh sub-
stitution used in the symbolic rewrite relation of [20]. Important future work
is to better understand criteria for allowing equations over non-builtin sorts, to
make symbolic rewriting modulo SMT more generally applicable.

A notion of guarded term is introduced in [2] as a method to reduce the
search state space in symbolic rewriting modulo SMT. A guarded term is a
pair consisting of a term and a constraint, or the disjunction of a set of guarded
terms. The paper develops the formal theory of rewriting with guarded terms and
presents experiments based on the CASH protocol showing state space reduction
for various forms of guard. Although the paper motivates guards by a need to also
reduce complexity of constraints sent to the SMT solver, no results on constraint
size are reported. The results in the present paper seem to suggest that not only
the size of state space matters for automation, but also the size of constraints
that are sent to the SMT-Solver. It will be interesting to see if guards can be used
to control the tradeoffs between search space size and constraint size explored
in the present paper.

7 Conclusions

This paper proposes an extension of Soft Agents frameworks with Rewriting
Modulo SMT to enable the automated generation of safety proofs of CPS. We
demonstrate its expressiveness with a vehicle platoon scenario which is a com-
mon feature of autonomous vehicles. We carry out a collection of experiments
demonstrating that delagating verification to rewriting has a positive impact in
verification performance.

We are planning to use this framework in several directions that comple-
ment related work. We are currently automating the verification conditions for
RTA [7]. We also believe that our framework is applicable to problems other
than vehicle safety, for example it could be used to enable symbolic security
verification by extending our previous work [5].

16

Inspired by the presentation at WRLA 2022 on the Python bindings for
Maude [22], we adapted our implementation to use the Python bindings instead
of MaudeSE [14]. This enables full access to SMT-solver interface, including to
new SMT-solvers such as CVC5 [3]. In the future, we plan to implement Python
libraries based on these Python bindings for Maude to improve usability of the
Soft Agents framework and quick integration to other tools/methods.
Acknowledgments. Talcott was partially supported by the U. S. Office of Naval
Research under award numbers N00014-15-1-2202 and N00014-20-1-2644, and
NRL grant N0017317-1-G002.

References

1. M. Althoff and J. M. Dolan. Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robotics, 30(4):903–918, 2014.

2. K. Bae and C. Rocha. Symbolic state space reduction with guarded terms for
rewriting modulo SMT. Science of Computer Programming, pages 20–42, 2019.

3. H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mo-
hamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds,
Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength SMT
solver. In D. Fisman and G. Rosu, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume
13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude: A High-Performance Logical Framework, volume 4350 of
LNCS. Springer, 2007.

5. Y. G. Dantas, V. Nigam, and C. L. Talcott. A formal security assessment frame-
work for cooperative adaptive cruise control. In IEEE Vehicular Networking Con-
ference, VNC 2020, New York, NY, USA, December 16-18, 2020, pages 1–8. IEEE,
2020.

6. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ra-
makrishnan and J. Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

7. A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, and A. Tiwari. SOTER: A run-
time assurance framework for programming safe robotics systems. In 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2019, Portland, OR, USA, June 24-27, 2019, pages 138–150. IEEE, 2019.

8. A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun. CARLA:
an open urban driving simulator. In 1st Annual Conference on Robot Learning,
CoRL 2017, Mountain View, California, USA, November 13-15, 2017, Proceedings,
volume 78 of Proceedings of Machine Learning Research, pages 1–16. PMLR, 2017.

9. D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and
S. A. Seshia. Scenic: a language for scenario specification and scene generation. In
K. S. McKinley and K. Fisher, editors, Proceedings of the 40th ACM SIGPLAN

17

Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, pages 63–78. ACM, 2019.

10. I. i. Mason, V. Nigam, C. L. Talcott, and A. V. D. Brito. A framework for analyzing
adaptive autonomous aerial vehicles. In A. Cerone and M. Roveri, editors, Software
Engineering and Formal Methods - SEFM 2017 Collocated Workshops: DataMod,
FAACS, MSE, CoSim-CPS, and FOCLASA, Trento, Italy, September 4-5, 2017,
Revised Selected Papers, volume 10729 of Lecture Notes in Computer Science, pages
406–422. Springer, 2017.

11. S. J3016. https://www.sae.org/news/2019/01/
sae-updates-j3016-automated-driving-graphic. 2021.

12. S. Jha, J. Rushby, and N. Shankar. Model-centered assurance for autonomous sys-
tems. In A. Casimiro, F. Ortmeier, F. Bitsch, and P. Ferreira, editors, Computer
Safety, Reliability, and Security - 39th International Conference, SAFECOMP
2020, Lisbon, Portugal, September 16-18, 2020, Proceedings, volume 12234 of Lec-
ture Notes in Computer Science, pages 228–243. Springer, 2020.

13. N. Kalra and S. M. Paddock. Driving to safety – https://www.rand.org/content/
dam/rand/pubs/research_reports/RR1400/RR1478/RAND_RR1478.pdf. 2021.

14. MaudeSE. https://github.com/maude-se/maude-se.github.io. 2021.
15. T. Menzel, G. Bagschik, and M. Maurer. Scenarios for development, test and

validation of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium,
IV 2018, Changshu, Suzhou, China, June 26-30, 2018, pages 1821–1827. IEEE,
2018.

16. F. Moradi, S. A. Asadollah, A. Sedaghatbaf, A. Causevic, M. Sirjani, and C. L.
Talcott. An actor-based approach for security analysis of cyber-physical systems.
In M. H. ter Beek and D. Nickovic, editors, Formal Methods for Industrial Critical
Systems - 25th International Conference, FMICS 2020, Vienna, Austria, Septem-
ber 2-3, 2020, Proceedings, volume 12327 of Lecture Notes in Computer Science,
pages 130–147. Springer, 2020.

17. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for real-time
maude. In G. Denker and C. L. Talcott, editors, Proceedings of the 6th Inter-
national Workshop on Rewriting Logic and its Applications, WRLA 2006, Vienna,
Austria, April 1-2, 2006, volume 174 of Electronic Notes in Theoretical Computer
Science, pages 5–27. Elsevier, 2006.

18. P. C. Ölveczky and J. Meseguer. The real-time maude tool. In TACAS 2008, pages
332–336, 2008.

19. S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer. Survey on
scenario-based safety assessment of automated vehicles. IEEE Access, 8:87456–
87477, 2020.

20. C. Rocha, J. Meseguer, and C. Muñoz. Rewriting modulo SMT and open system
analysis. Journal of Logical and Algebraic Methods in Programming, pages 269–297,
2017.

21. C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and open system
analysis. J. Log. Algebraic Methods Program., 86(1):269–297, 2017.

22. R. Rubio. Maude as a library: an efficient all-purpose programming interface. In
Rewriting Logic and its Applications (WRLA), 2022.

23. S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a formal model of safe and
scalable self-driving cars. CoRR, abs/1708.06374, 2017.

24. J. Sifakis. Autonomous systems - an architectural characterization. CoRR,
abs/1811.10277, 2018.

18

https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1478/RAND_RR1478.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1478/RAND_RR1478.pdf
https://github.com/maude-se/maude-se.github.io

25. C. Talcott, V. Nigam, F. Arbab, and T. Kappé. Formal specification and analysis
of robust adaptive distributed cyber-physical systems. In M. Bernardo, R. D.
Nicola, and J. Hillston, editors, Formal Methods for the Quantitative Evaluation
of Collective Adaptive Systems, LNCS. Springer, 2016. 16th edition in the series
of Schools on Formal Methods (SFM), Bertinoro (Italy), 20-24 June 2016.

26. C. L. Talcott, F. Arbab, and M. Yadav. Soft agents: Exploring soft constraints
to model robust adaptive distributed cyber-physical agent systems. In Software,
Services, and Systems - Essays Dedicated to Martin Wirsing, pages 273–290, 2015.

27. S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Fuel-efficient en route
formation of truck platoons. IEEE Trans. Intell. Transp. Syst., 19(1):102–112,
2018.

19

	Automating Safety Proofs about Cyber-Physical Systems using Rewriting Modulo SMT
	Vivek Nigam and Carolyn Talcott

