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Abstract

Although logic and proof theory have been successfully used as a framework for the specification of
computation systems, there is still an important gap between the systems that logic can capture and
the systems used in practice. This thesis attempts to reduce this gap by exploiting, in the context
of the computation-as-proof-search paradigm, two non-canonical aspects of sequent calculus, namely
the polarity assignment in focused proofs and the linear logic exponentials. We exploit these aspects
in three different domains of computer science: tabled deduction, logical frameworks, and algorithmic
specifications.

This thesis provides a proof theoretic explanation for tabled deduction by exploiting the fact that
in intuitionistic logic atoms can be assigned arbitrary polarity. A table is a partially ordered set of
formulas and is incorporated into a proof via multicut derivations. Here, we consider two cases: the
first case is when tables contain only finite successes and the second case is when tables may also
contain finite failures. We propose a focused proof system for each one of these cases and show that,
in some subsets of logic, the only proofs and open derivations available in these systems are those
that do not attempt to reprove tabled formulas. We illustrate these results with some examples, such
as simulation, winning strategies, and let polymorphism typechecking.

We show that linear logic can be used as a general framework for encoding proof systems for
minimal, intuitionistic, and classical logics. First, we demonstrate that with a single linear logic
theory, one can faithfully account for natural deduction (normal and non-normal), sequent calculus
(with and without cut), natural deduction with general elimination rules, free deduction and tableaux
proof systems by using logical equivalences and different polarity assignments to meta-level literals.
Then we exploit the fact that linear logic exponentials are not canonical and propose linear logic
theories that faithfully encode different proof systems; for example, a multi-conclusion system for
intuitionistic logic and several focusing proof systems.

For the last contribution of this thesis, we investigate what type of algorithms can be expressed
by using linear logic’s non-canonical exponentials. In particular, we use different exponentials to
“locate” multisets of data, and then we show that focused proof search can be precisely linked to a
simple algorithmic specification language that contains while-loops, conditionals, and insertion into
and deletion from multisets. Finally, we illustrate this result with several graph algorithms, such as
Dijkstra’s algorithm for finding the shortest distances in a positively weighted graph and an algorithm
for checking if a graph is bipartite.
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CHAPTER 1

Introduction

It is unfortunate that computer artifacts are often constructed in such an ad hoc fashion. Software
is usually just built to run efficiently without too many errors. Other important concerns, that are
essential for the quality of large, complicated, and expensive systems, are left aside or when addressed,
they are not handled with formal and precise methods: for example, correctness — if programs really
compute what was intended; modularity — if different programs can be composed without affecting
their individual behaviors; readability — if one can easily understand the logic used in a program
to solve a problem; interoperability — if programs can be used on different machine architectures;
etc. As logic and proof theory have a long tradition of dealing with formal languages and provide
powerful tools for reasoning over logic specifications, computer scientists have successfully used logic
to specify computation systems. For instance, in the past decades, proof theory has been widely
used in the design of programming languages along two lines of research related to the Curry-Howard
isomorphism [Howard 1980] and the computation-as-proof-search paradigm.

Although in the past years many techniques and fundamental results about logic have been dis-
covered, allowing one to specify a wider range of computational behaviors, there is still an important
gap between the systems that logic can formally capture and the systems used in practice. For exam-
ple, in the context of computation-as-proof-search, logic interpreters, such as Prolog, often contain
non-logical elements, like ¢tabling mechanisms [Ramakrishna 1997, Pientka 2005], that are necessary
for expressing more algorithms or for increasing proof search efficiency. In order to fill this gap,
one needs to further investigate and better understand logic and proof theory. In particular, we are
interested in some of their non-canonical aspects that provide us with an opportunity to specify more
computations. In this thesis, we exploit two such non-canonical aspects, namely the polarity assign-
ment in focused proofs and the linear logic exponentials, by using the computation-as-proof-search
paradigm in different domains of computer science.

At the heart of the connection between proof search and computation lies the sequent calculus,
proposed by Gentzen in 1935 [Gentzen 1969]. A sequent calculus system is a collection of inference
rules that derives multisets of formulas called sequents'. The computation-as-proof-search paradigm
connects computation with the search for sequent calculus proofs as follows: logic formulas represent
program instructions; sequents represent states of the world; and sequent calculus proofs represent
computation traces. The sequent at the root of a sequent calculus derivation represents the initial
state of the world and the sequents at its open leaves represent the states of the world that result
from performing a sequence of computation steps. Therefore, from this perspective, one is usually
interested in specifying a computation, say an algorithm, in such a way that the proofs obtained
from its logic specification correspond to its execution runs and vice versa. However, sequent calculus
systems without any particular discipline on how inference rules are applied allow too many proofs
to be useful for specifying interesting behaviors. One needs to consider some type of canonical
proofs that have some proof search discipline. Andreoli [Andreoli 1992] proposed such a discipline,
called focusing, where proofs are structured in two alternating focusing phases and formulas are
classified as positive and negative according to which phase the introduction rules for their main
connectives belong to. However, as the atomic formulas do not have inference rules, they are classified
arbitrarily as positive or negative. This non-canonical aspect in focusing can be exploited by computer

Hn fact, Gentzen originally defined sequents as a sequence of formulas.
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scientists. For example, changing the polarity assignment for atoms allows one to mix forward and
backward chaining style proof search and this can be used to capture different computational behaviors
[Liang 2008, Liang 2007, Miller 2007a, Jagadeesan 2005, Nigam 2008b].

Linear logic is a substructural logic proposed by Girard [Girard 1987], which has been widely
used in both proof theory, as the logic behind logics, and computer science, as the logic of resources.
Differently from classical logics, the structural rules for weakening and contraction are not allowed
for all formulas, but only those formulas marked with the so called exponentials. However, these
exponentials are not canonical in the sense that one could create different colored exponential-like
connectives, say red exponentials and blue exponentials, that are not equivalent. In fact, it is possible
to have as many exponential-like operators, called subexponentials, as one would like: they may or
may not allow weakening and/or contraction and they can be organized into a preorder that specifies
which operator logically entails others [Danos 1993].

In this thesis, we exploit the non-canonical aspects discussed above in the three following domains
of computer science:

Tabled Deduction — Consider attempting to prove the conjunctive query B A C' from a logic
program I'. This attempt can be reduced to first attempting to prove B from I' and then C' from
T". It might well be the case that during the attempt to prove C, many subgoals need to be proved
that were previously established during the attempt to prove B. Of course, if proved subgoals can be
remembered from the first conjunct to the second, then it might be possible to build smaller proofs
and these might be easier to find and to check for correctness. Some implemented logic programming
systems introduce tables as a device to store proved literals so that their provability can be used in
later attempts to prove goals. Systems such as XSB [Ramakrishna 1997] and Twelf [Pientka 2005]
make it possible to specify that some predicates should be tabled: that is, whenever an atomic formula
with such a predicate is successfully proved, that atomic formula is remembered by placing it in a
global table. In this way, if the prover attempts to reprove an atom that is already tabled, then the
proof process can be immediately stopped with a success. Besides this aspect of not proving formulas,
tabling systems improve proof-search considerably by also remembering finite failures. Whenever a
goal is shown not be provable, it is also stored in a table, and if the interpreter attempts to prove a
tabled finite failure, it does not proceed.

Although it is clear that one can build implementations with tabling mechanisms, a more inter-
esting question is whether we can avoid reproving formulas and avoid proceeding when a finite failure
is encountered by proof theoretic means, that is, enforce in the logic that all available proofs and
open derivations are those that do not attempt to prove tabled formulas. We exploit the fact that
polarities of atoms in intuitionistic logic can be assigned as positive and negative to specify focusing
disciplines that accomplish this goal. First we consider the case when a table contains only atomic
formulas denoting finite successes. Then, we consider a second case where we also allow tables to
contain fized point literals and universally quantified fized point literals denoting finite successes and
finite failures.

Logical Frameworks — Logics and type systems have been exploited in recent years as
frameworks for the specification of deduction in a number of logics. The most common such
meta-logics and logical frameworks have been based on intuitionistic logic (see, for example,
[Felty 1988, Paulson 1989]) or dependent types (see [Harper 1993, Pfenning 1989]). Such intuitionistic
logics can be used to directly encode natural deduction style proof systems.

In a series of papers [Miller 1996, Pimentel 2001, Miller 2002, Miller 2004, Pimentel 2005], Miller
& Pimentel used classical linear logic as a meta-logic to specify and reason about a variety of sequent
calculus proof systems. Since the encodings of such logical systems are natural and direct, the meta-
theory of linear logic can be used to draw conclusions about the object-level proof systems. For
example, in [Miller 2002], a decision procedure was presented for determining if one encoded proof
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system is derivable from another. In the same paper, necessary conditions were presented (together
with a decision procedure) for assuring that an encoded proof system satisfies cut-elimination. This
last result used linear logic’s dualities to formalize the fact that if the left and right introduction rules
are suitable duals of each other then non-atomic cuts can be eliminated.

In this thesis, we continue this line of research in two different ways. First, we exploit the
fact that the linear logic literals can be assigned arbitrary polarities, and we show that, by us-
ing a single linear logic theory, one can faithfully account for natural deduction (normal and
non-normal), sequent calculus (with and without cut) [Gentzen 1969], natural deduction with gen-
eral elimination rules [von Plato 2001], free deduction [Parigot 1992] and tableaux proof systems
[D’Agostino 1994, Smullyan 1968a]. In the second direction, we exploit the fact that the linear logic
exponentials are not canonical and propose theories that encode different proof systems, for example
a multi-conclusion system for intuitionistic logic [Maehara 1954] and several focusing proof systems
[Herbelin 1995, Dyckhoff 2006, Liang 2008].

Algorithmic Specifications — A major obstacle to describing algorithms using linear logic pro-
grams, in the sense that the set of proofs and of computations runs are in one-to-one correspondence,
is that data encoded into contexts does not support enough tests on data. While it is possible in
linear logic to detect that the whole multiset of linear formulas, that is, formulas that cannot contract
or weaken, is empty, it is not possible to perform this test on some particular subset. Consider, for
example, that we encode in linear logic a graph with nodes N and adjacency relation A with the
following multisets of linear logic atoms:

{node z |z € N}u{adj z y| (x,y) € A},

where node and adj are predicates. Linear logic provides a simple mechanism to detect that both the
set of nodes and the adjacency information are empty, but the logic does not provide means to check
emptiness of just N or just A.

We exploit the fact that the linear logic exponentials are not canonical to “locate” data by using
subexponentials. These subexponentials provide linear logic specifications with enough checks on data
to allow for a range of algorithms to be emulated ezactly via (focused) proof search. We illustrate
this claim by specifying a simple programming language, called BAG, containing loop instructions,
conditionals and operations that insert into and delete from a multiset, which is powerful enough
to specify complicated algorithms, such as Dijkstra’s algorithm for finding the shortest distances
in a positively weighted graph. We then show that for any BAG program there is a one-to-one
correspondence between the set of its (partial) computations and the set of (open) focused derivations
of its logic interpretation.

1.1 Outline

This thesis is structured as follows:

Chapter 2 introduces the basic concepts and vocabulary used throughout this thesis. It intro-
duces sequent calculus proof systems for classical, intuitionistic and linear logics, highlighting some
non-canonical aspects present in these formalisms. In this chapter, we also discuss focusing which is
one of the cornerstones of this thesis.

Chapter 3 contains the results related to the declarative specification for tabled deduction. We
start this chapter by introducing the focused proof system for intuitionistic logic LJF [Liang 2008,
Liang 2007], which will be used to derive specialized proof systems that adopt the different focusing
disciplines mentioned above. As cuts play an important role in incorporating tables into proofs,
we discuss the design of focused proofs with cuts. We then propose the first focused proof system
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enforcing that the only proofs available are those that do not reprove atoms that are in a table.
Later, we introduce a proof theory for fixed points and propose the second focused proof system
enforcing that fized point literals and universally quantified fized points in a table are not reproved
and that derivations attempting to prove a negative fixed point are not allowed. We illustrate these
results with several examples, including winning strategies, simulation, and a declarative specification
for let-polymorphism type checking [Milner 1978|. Parts of this chapter appeared in the conference
papers [Miller 2007a] and [Nigam 2008a).

Chapter 4 contains some of the results related to the specification of Logical Frameworks. In this
chapter, we describe how object-logic formulas, sequents and inference rules can be encoded in linear
logic. Here, we also distinguish three increasing levels for adequacy: the level of relative completeness
— when two proof systems prove the same theorems; the level of full completeness of proofs — when
two proof systems have the same proofs; and the level of full completeness of derivations — when
two systems have the same (open) derivations. Later, we construct from a single linear logic theory
equivalent theories that encode with the strongest level of adequacy different proof systems, namely
natural deduction (normal and non-normal), sequent calculus (with and without cut) [Gentzen 1969],
natural deduction with general elimination rules [von Plato 2001], free deduction [Parigot 1992] and
tableaux proof systems [D’Agostino 1994, Smullyan 1968a]. A direct consequence of the strong level
of adequacy obtained and the fact that these theories are equivalent is the relative completeness of the
encoded proof systems; for example, we show that sequent calculus and natural deduction systems for
intuitionistic logic prove the same theorems. Parts of this chapter appeared in the conference paper
[Nigam 2008b] and in its extended version [Nigam 2009b].

Chapter 5 investigates the proof system for linear logic with subexponentials called SELL. In
particular, we review the conditions on the preorder of subexponentials needed to show that the cut-
elimination theorem holds for SELL [Danos 1993|. Then, we proceed by proposing a focused proof
system for SELL starting first by considering the case when there are no relevant formulas, that is,
there are no formulas that can contract but not weaken. Later, we describe two different focused
systems for the general case. Finally, we also propose a new logic that allows for the creation and
modification of subexponentials. Parts of this chapter appeared in [Nigam 2009a].

Chapter 6 revisits the concerns related to Logical Frameworks, discussed in Chapter 4, exploiting
the increase of expressiveness obtained by the addition of subexponentials to linear logic. In partic-
ular, we propose linear logic theories that encode different proof systems with the strongest level
of adequacy, namely a multi-conclusion system for intuitionistic logic [Maehara 1954] and several
focusing proof systems [Herbelin 1995, Dyckhoff 2006, Liang 2008].

Chapter 7 studies what algorithms can be expressed in linear logic with subexponentials. In
particular, we use subexponentials to assign locations to multisets of formulas within a linear logic
programming setting. Treating locations as subexponentials greatly increases the algorithmic expres-
siveness of logic. To illustrate this new expressiveness, we show that focused proof search can be
precisely linked to a simple algorithmic specification language that contains while-loops, conditionals,
and insertion into and deletion from multisets, called BAG. We illustrate this result with several graph
algorithms, such as Dijkstra’s algorithm for finding the shortest distances in a positively weighted
graph and an algorithm for checking if a graph is bipartite. We also illustrate in this chapter that
by changing focusing annotations, such as delay operators, we can capture different intended opera-
tional semantics, which can greatly affect the behavior of programs. Parts of this chapter appeared
in [Nigam 2009a].

Chapter 8 concludes this thesis by summarizing its main contributions.



CHAPTER 2
Non-canonical aspects of the Sequent
Calculus

Proof theory is the field of mathematics that investigates the properties and the structure of formal
proofs. Although the idea of proof in mathematics is very old, its precise formalization dates back only
a past hundred years or so, with Hilbert’s axiomatic proof system. Since then many have contributed
with different formalisms that can be used for the study of proofs. In this chapter, we introduce one
such formalism, proposed by Gentzen in 1935 [Gentzen 1969], called Sequent Calculus, which also has
deep connections with computer science. Here, we also highlight some of its non-canonical aspects.
This is in no way an exhaustive exposition of these topics, but just a gentle introduction, focusing
only on the concepts needed in the following chapters. Nevertheless, the reader can find more details
in the following references [Kleene 1968, Troelstra 1996, Girard 1989].

We start by introducing the notion of canonical forms. Given a set of objects, S, with an equiv-
alence relation, we say that some objects in S are the canonical forms of S if all objects in S are
equivalent to exactly one canonical form. Intuitively, the canonical forms of a set S can be seen as
the representative objects of the equivalence classes specified by the given equivalence relation. In the
following sections, we point out many aspects of the sequent calculus, such as first order quantifiers
and different focused proofs obtained from different polarity assignments for literals, that do not have
a unique canonical form, but distinct canonical representations for such aspects.

This chapter is structured as follows: after introducing the syntax of formulas in Section 2.1, we
explain, in Section 2.2, the main vocabulary for the Sequent Calculus, by introducing the sequent
calculus system LK for classical logic. Section 2.3 introduces the sequent calculus system LJ for
intuitionistic logic and Section 2.4 introduces the sequent calculus system LL for linear logic. Finally,
in Section 2.5, we describe focusing and introduce the focused proof system, LLF, for linear logic.

2.1 Syntax

We use a similar approach for syntax as in Church’s type theory [Church 1940]. Instead of using a
single type, 7, for individuals, we allow terms to have any simple type, that does not contain the type
o0, which is reserved for propositions. Moreover, we generally assume that terms are in gn-long forms.
For example, the types for the classical logic connectives are as follows:

T,1l:0
=,\,V:0o—0—o0
3,V (y—0) —o0

Here, renaming and substitution of variables are handled by using the standard a-conversions and
(-reductions in the A-calculus. Notice as well that in this setting the universal and the existential
quantifications do not have a unique canonical form, as there is a pair of quantifiers for each type ~
different from o. In most of the cases, it will be clear from the context which type of quantifier we
are using, and therefore we will elide the subscript v in these connectives. To ease notation, we also
write quantified formulas, such as VAz.P and I\z.P, as Vo P and 3z P.
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2.2 Sequent Calculus

Introduced by Gentzen in 1935 [Gentzen 1969], the Sequent Calculus, together with Natural Deduction
[Gentzen 1969, Prawitz 1965], has been used as the main tool for the study of the structure of proofs.
A sequent calculus system is a collection of inference rules that derives sequents. For example, the
sequent calculus for classical logic LK, shown in Figure 2.1, derives sequents of the form I' = A, where
both T', denoting assumptions, and A, denoting propositions, are multisets of formulas. Intuitively,
a sequent I' = A denotes that the conjunction of the formulas in I" entails (denoted by the symbol F
called turnstyle) the disjunction of the formulas in A. We use the sequent calculus LK to specify the
main vocabulary used throughout this thesis.

In a sequent calculus rule, we call the sequent(s) appearing above the horizontal line its premise(s)
and the sequent appearing below the horizontal line its conclusion. For example, the initial rule I
has no premises, while the rule A, has two premises. The principal formula of a rule is the formula
distinguished in its conclusion, and the active formulas of a rule are the subformulas of the principal
formula in its premises and its principal formula. For example, the active formulas of the rule A, are
P, @ and the principal formula P A Q. The remaining formulas are the side-formulas. We often say
that a formula that appears to the left (respectively right) of the turnstyle is on the left-hand-side
(respectively right-hand-side) of the sequent. The rules in a sequent calculus system can be classified
into three groups: (1) the identity rules are the rules that require to check if two formulas are the
same. In LK, the axiom rule is applicable if, in its conclusion, there is a formula on the right that is
the same as a formula on the left of the turnstyle. On the other hand, the cut rule is applicable only
if the same formula appears in the left-hand-side of its left premise and in the right-hand-side of its
right premise. Notice that the cut rule is the only rule in LK where the formulas in the premises are
not subformulas of formulas in the conclusion. We shall return to this observation when we describe
the cut-elimination theorem and the subformula property. (2) The structural rules are rules that do
not operate on any logical connective, but on sequents directly. For example, the structural rules in
LK just express that the formulas, appearing in the left and right side of the turnstyle, can be seen as
sets of formulas. In fact, all the systems considered in this thesis have exchange rules, and, therefore,
we no longer consider these rules explicitly. However, later in this chapter, we specify substructural
logics that do not allow weakening and contraction rules to be applied to all formulas and those rules
still remain of interest. (3) The logical rules are the rules that decompose logical connectives.

A sequent calculus derivation is a tree structure in which all of its nodes are decorated with valid
sequents and for any sequent, when seen as the conclusion of a rule, and its children, when seen as the
premises of a rule, constitute a valid instance of a rule in the system. The premises of a derivation
are the sequents at the open leaves of the tree. The sequent at the root of the tree is called the
endsequent of the derivation. A sequent calculus proof is a derivation that does not contain premises.
For example, the object to the left is an LK proof of the excluded middle and the object to the right
is an LK proof of one of the De Morgan’s laws:

AI—A[? | BI—B[[] |
arall A | B Vel
AL A Ayl Ty Ve

A e A]
Avata SANBATVEL
FAvAL Aval (AANB)LFAtyBt "
— & T o a2
FAVA F(AAB)T = (A-v BY)

In fact, because of LK’s symmetry, all De Morgan’s laws, listed below, are provable in LK:



2.2. Sequent Calculus 7

o (PAQ)*=PrvQ* o (PVQ)‘r=P-AQH
o (J2.P)t =vz.Pt e (Vz.P)t =32 P
e (A= B)t=AABY

where P = (@) is an abbreviation for the sequent - P = Q A QQ = P. These laws allow the use of
a more concise presentation for LK, where sequents are one sided, that is, sequents where formulas
appear only in one side of the turnstyle. Intuitively, we replace a two sided sequent I' H A by the one
sided sequent - I't, A. We consider the negation of a formula as its negation normal form obtained
by pushing the negation inside the formula, via De Morgan’s laws, until negations only appear before
atoms. Moreover, for atoms, A, we rewrite A+ as A. The one sided system for LK is depicted
in Figure 2.2. Notice that not all systems have a one sided version; the most notorious example
being the proof system LJ for intuitionistic logic, where sequents have at most one formula in the
right-hand-side of the turnstyle. When possible, we prefer to use the one-sided version of a system
because of its simplicity.

In most of the sequent calculus systems, the initial rule can be restricted to only atomic principal
formulas without the loss of completeness, that is, being able to prove the same set of theorems.

Proposition 2.1 A formula F is provable in LK if and only if it is provable in LK by using only
instances of atomic initial rules.

We can reduce instances of non-atomic initial rules to instances of atomic initial rules by repeatedly
applying transformations of the form:

_prp QFQ[HN
; PAQrP VY PAQFQ X
PAQFPAQ[] ~ PAQFPAQ [Ar]

We now return to the cut rule. The cut rule differs from all others rules in LK because it introduces
in the proof a new formula, called cut formula. This formula can be seen as an auxiliary lemma that
when introduced in a proof, has to be proved in the left premise of a cut rule and can be used in
the proof of the right premise. As the cut formula does not appear in the conclusion of the cut rule,
there is some ingenuity involved to discover which cut formula to use. However, Gentzen showed that
any proof containing cuts can be transformed into a proof that does not contain cuts, called cut-free.
This result is called the Hauptsatz and gave birth to the field of Structural Proof Theory. The proof
of this theorem can be found in many references, e.g. in Chapter 4 of Troelstra and Schwichtenberg’s
book [Troelstra 1996].

Theorem 2.2 The cut rule is admissible in LK: any proof containing cuts can be transformed into
a cut-free proof with the same end-sequent.

Two important consequences of the cut-elimination theorem are the subformula property and the
consistency of the logic. The former consequence is stated as follows:

Proposition 2.3 All formulas appearing in a cut-free proof are subformulas of formulas appearing
at its endsequent.

The latter consequence states that it is not possible to prove both a formula and its negation.

Proposition 2.4 For any formula P, it is not the case that both sequents - P and - P+ are provable
in LK.
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IDENTITY RULES

I'MEP A T, PH Ay
I, o E A Ay

1] [Cut|

PI—P[

LoGicAL RULES

Ttra Al
reap. o LPEA L
rpirat™ rEpialt

PLEA o DEPA TEQA
PIAP,TFA [l TFPAQ,A 7]
PTHA QTFA kP, A

pvorra WV e veaa v

MEPA QTyF A IPHQ,A

PoonLraA, o0 Trpsga 7
Plc/z], T+ A 5 'k Plt/x], A 5
J2.P,TF A El CF3z.P A 5]
Plt/z],THA v 'k Ple/z], A v
Vz.P,T A [¥] L FVz.P A [¥"]

STRUCTURAL RULES
P,PTFA I'FPPA
PTFA (4] TFPA [C]
TFA TFA
P,FI—A[WI] FFP,A[WT]
,Q,P,T' A TFAQ,PA
A~ Bl o B
[,P,Q,I'FA T'FAPQ,A

Figure 2.1: The identity, logical and structural rules of the two sided presentation for LK, a sequent
calculus system for classical logic. In the rules V,. and 3;, the eigenvariable ¢ does not appear free in
T nor A.
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IDENTITY RULES

FPA, FPL A,

F PPl [1] CALA, [Cut]
LocGicAL RULES
FAT [T]
FPL QA
FP=Q.A [=]
F P[t/z], A F Ple/x], A

A P Tea M

STRUCTURAL RULES

P PA
FPA

A
FPA

€] W]

Figure 2.2: The identity, logical and structural rules of the one sided presentation for LK, a sequent
calculus system for classical logic. In the rule V, the eigenvariable ¢ does not appear free in A.

Proof Assume by contradiction that a formula, P, and its negation, P+, are both provable in LK.
Then the empty sequent could be proved by using two consecutive cuts:

=2 [Cut] —— Ul
FRPLWM

I—P[

Cut]

However, as there is clearly no cut-free proof for the empty sequent, this leads to a contradiction. O

The cut-elimination theorem has also important connections with computer science, namely it
is connected to two programming paradigms: functional programming and logic programming. The
former connection is the Curry-Howard isomorphism that establishes the correspondence between
proof systems and models of computation, such as A-calculus: a program corresponds to a proof and
the formula a proof proves corresponds to the type of the program. Proofs are run by performing a
step of the cut-elimination procedure, which in A-calculus corresponds to S-reduction. The canonical
proofs for this paradigm are the cut-free proofs obtained by applying the cut-elimination algorithm.
The latter connection comes from the computation-as-proof-search point of view. Sets of logic formulas
represent, logic programs, sequents represent states of the world, and cut-free sequent calculus proofs
represent computation traces. The idea is that, when a clause in a logic program is used (from
bottom-up), the conclusion of the derivation corresponds to the initial state of the world, and its
premises to the states obtained after a computation step is performed. We discuss in Section 2.5 the
canonical proofs for this paradigm, called focused proofs. In this thesis, we concentrate mainly on the
latter paradigm.
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2.3 Intuitionistic Logic

The main difference between intuitionistic logic and classical logic is that the former only allows for
constructive proofs, that is, proofs that also demonstrate how to construct the objects in the proof.
Consider, for example, the following classical logic non-constructive proof of the following theorem:

there exist two irrational numbers, a and b, such that a® is rational.

We know that /2 is irrational. Consider the number v/2" : either it is rational or irrational. In
the former case, it would mean that there are two numbers a = b = /2 for which a? is rational.

For the latter case, if \/5\/5 is irrational, we show that if a = ﬂﬁ and b = /2 then a’ is rational:
ab = \/5(\/§>< v2) = \/52 = 2, proving the theorem.

This proof would not be valid in intuitionistic logic as one cannot construct from this proof two
irrational numbers a and b such that a® is rational. Its non-constructiveness comes from the use of
the law of excluded-middle YA.A vV AL (in the proof, the cases either it is rational or irrational),
which is not true in intuitionistic logic.

The proof system for intuitionistic logic LJ is shown in Figure 2.3, where we define intuitionistic
negation =A as A O L. Differently from classical logic, the right-hand-side of sequents is allowed
to contain at most one formula. Because of this restriction, the De Morgan’s laws are not provable
in intuitionistic logic, and, therefore, there is no one-sided presentation for LJ. Moreover, as the
cut-elimination theorem holds for intuitionistic logic, LJ is consistent and admits the subformula
property.

In the two last sections, we gave a very brief introduction to the sequent calculus for classical
and intuitionistic logics. Later in Chapters 4 and 6, we show and discuss other sequent calculus
systems for these logics. Now we proceed to linear logic, a substructural logic introduced by Girard
[Girard 1987], where differently from classical logic weakening and contraction cannot be applied to
all formulas.

2.4 Linear Logic

In a classical or intuitionistic logic proof, because of the contraction and the weakening rules, hy-
potheses can be used as many times as necessary or even not be used at all. In linear logic the story
is different. As contraction and weakening cannot be applied to all formulas, some hypotheses must
be used and be used only once.

The syntax for linear logic formulas is given below and its rules are depicted in Figure 2.4:

P = A|P®P|P®P|1]|0]|!P|3z.P|
AL |P&P|P®P|L|T|?P|Ve.P

Weakening and contraction can only be applied to formulas whose main connective is a question mark.
This connective acts like a guard keeper: seeing from bottom up, the ? allows structural rules to be
applied to formulas, and when enough copies of a formula are made, the question mark can be removed
by using the dereliction rule D?. We classify the formulas that do not allow neither contraction nor
weakening as linear and the formulas that allow contraction and weakening as unbounded. Because
of this control over structural rules in linear logic, disjunction and conjunction appear in two different
forms: the multiplicative ones, ® (called tensor) and @ (called par), and the additive ones, & (called
with) and @ (called plus). This was not the case in classical logic because one type of conjunction
(respectively disjunction) could be derived from the other. The following derivations illustrate how
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IDENTITY RULES

I F1—>P FQ,P—>C
P—>P[] F17F2—>O

[Cut]

LogicAL RULES
[1]

1.7 —- Fﬁt[tr]

)

PHF—)O
Pl/\P27].—‘—>C

r—p°P I'—Q
F—>P/\Q [/\7‘]

[Aui]

P —C Q,F—>C[v] I — P
PvVQT —C ! I — P VP,

[Vri]

F1—>P Q,F2—>C 5 F,P—>Q
P>QT,,I, —C =>4 I -P>Q

2]

Pl¢/z], T — C Plt/x]

i R il UL
32.P,T — C El T 3ep 1
Plt/x],I' — C I' — Plc/x]
Vz.P,T — C [l T —verp |7

STRUCTURAL RULES

P,P,T — C

PT —C ]

r —c=C I —.
PT —C Wil =75 Wl
Figure 2.3: The identity, logical and structural rules for LJ, a sequent calculus system for intuitionistic
logic. In the rules V,. and J;, the eigenvariable ¢ does not appear free in I" nor C, and C' denotes
either a formula or no formula.



12 Chapter 2. Nomn-canonical aspects of the Sequent Calculus

IDENTITY RULES

FIT,Pt FA,P
[I] ) 9

- P, Pt FT,A [Crut]

LocicaL RULES
T
T S e S

FT, P FT,P F1,Q

T hoR @ Treg M
FT.P.Q TP FAQ
T peo®l Trareg @

T, P[t/x] T, Plc/x]

FT,32.P Bl FI,Vz.P 1¥]

T, P D) =T, P .
Fr2p Y Earap b

STRUCTURAL RULES

FT,?P,7P c FT
FT,?P FT,?7P

W]

Figure 2.4: Rules for the one sided version of linear logic. In the rule V, the eigenvariable ¢ does not
appear free in I'.

to derive in LK the additive conjunction, A, from the multiplicative one, A,,.

FT,A,P FT,A,Q

Am
FI,A,P +T,A,Q N FRRA,A,PAmQ[ ><]C’
TapPng e Taprg mxCl

Similarly, there are different connectives for truth and false, called units: T and 1 for truth and L
and 0 for false.

As the reader might have already noticed, there is a one sided version for linear logic, since there
are linear logic proofs for the De Morgan’s laws depicted below. Hence, we can push negation inside
a formula until we obtain a formula in negation normal form.

P®Q)L_PL,?QL

(

(P& Q) = Pt o QL
(F. P)J- =Vz.P

(7

where the linear equivalence P = @) denotes the linear logic sequent - (P — Q) ® (Q — P), —o is
the linear implication and A —o B denotes the linear logic formula A+ >® B. These equivalences also
illustrate the dualities in the logic: the pairs of connectives (®,79), (®,&), and (?,!) are duals. For
the units the equivalences T+ =0 and 1+ = L are also provable.

The connectives ? (called question-mark) and ! (called bang) are, commonly, called ezponentials
because of the equivalences below, that are provable in linear logic and look like the equality: e* ¥ =
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' . (P&Q)=(1P)2(Q); « 2APBQ) = (7P) 5 (2Q).

An important difference between the exponentials and the remaining connectives is that while the
latter have canonical forms, for example the tensor is canonical, the former do not have canonical
representations. Consider two different types of exponentials, say, one colored as blue, ?% and !b, and
the other as red, ?" and !". Moreover, consider that their introduction rules, called dereliction rule
for question-marks and promotion rule for bangs, are specified as follows :

F2T, F

FLE rF0LE
F 2T 1R

T, ?°F

) L

FT,F

b T
1) Cro D7

It is easy to check that the formula !°F = " F is not provable in this system for any formula F, thus the
two types of exponentials are not canonical. In fact, there are infinitely many distinct exponentials.
This was investigated by Danos et al. in [Danos 1993], where they propose a system with possibly
infinitely many colors for ? and !. We return to this system in Chapter 5, when we propose a focused
version for it. We then exploit this non-canonical aspect of linear logic in Chapters 6 and 7.

Girard proved that the cut-elimination theorem also holds for linear logic:

Theorem 2.5 The cut elimination theorem holds for linear logic.

Andreoli showed [Andreoli 1992] that the dyadic representation for linear logic, shown in Figure
2.5, is sound and complete with respect to linear logic. Dyadic sequents are of the form - © : T,
which can be read as the linear logic sequent F 70, T". This alternative representation simplifies the
handling of exponentials and structural rules. Unbounded formulas are contracted before a tensor
and a cut rule and weakened before an initial rule. We often refer to the context © as the unbounded
context and the context I' as the linear or bounded context. We return to this representation in the
next section.

Form the computation-as-proof-search paradigm, linear logic can be seen as the logic of resources.
Linear logic sequents represent states of the world; the linear formulas present in the sequent represent
the number of resources available; and linear logic proofs represent computations where the resources
available might change. For example, in the sequent - ?(euro® ® coffee), euro, the linear atom
specifies that an agent has only one euro, and the unbounded formula specifies the action of exchanging
a euro for a coffee. Hence, this agent could consume its euro and obtain a coffee, represented by
the sequent - ?(euro™ ® coffee), coffee. From a proof theoretic perspective, linear logic is used as the
logic behind logics to understand and study other logics, such as classical and intuitionistic logics.
For example, Girard showed that one could capture intuitionistic logic in linear logic by using the
following translation from intuitionistic formulas to linear logic formulas [Girard 1987], where A is an
atom:

TPAQT = TP&™QT TPVQY = I"Pg!IrQ”
™ = T 17 =0
rPDQ—' = 7rp—|J_>g>rQ7 A7 = A
He.P7 = Jax."P7 "Ve.P7 = Vz.P"

We explore the proof theoretic perspective in Chapters 4 and 6 and the computer science perspective
in Chapter 7.
We continue, in the next section, with one of the cornerstones of this thesis: focusing.

2.5 Focusing

The systems that we have considered so far do not have a strong proof search discipline. Proofs
are constructed in a small step fashion: one applies any applicable rule until no open leaves remain.
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IDENTITY RULES

FO:T,PL FO:AP

~o.ppL FO:T.A [Cut]
LoaicAL RULES
S - _Fe:r
F@:l[l] F@:F,T[T] F@:F,J_[L]

FO:T,P, . Fe:LP FO:NQ
re:r.pop re.r.pkq
FO:T,P,Q FO:T,P FO:A,Q
o TPeq Y 6.1 APzg
FO: T, Plt/z] FO:T, Plc/x]
FO:I',3z.P El FO:I'Vz.P 1¥]
FO,P:T,P FO:P
-2 7 ? - -2 N
FO,P:T [D7] l—@:!P[']

STRUCTURAL RULES

FO,P:T
FO:T,?7P 17l

Figure 2.5: Rules for the dyadic version of linear logic. In the rule V, the eigenvariable ¢ does not
appear free in T".
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The problem of this weak discipline is that it has a great deal of non-determinism in proof search,
as one can choose any formula in the sequent that a rule can be applied to. Thus, there are too
many proofs available in such systems to express, from the computation-as-proof-search perspective,
relevant computational behaviors. We need canonical proofs that have a better proof search behavior.
Andreoli provided such proofs by introducing the focusing discipline [Andreoli 1992] where proofs are
constructed, instead, in a big step fashion.

Andreoli proved the completeness of the focused proof system for linear logic, LLF, given in
Figure 2.6. Focusing proof systems involve applying inference rules in alternating phases. For this
we first classify connectives and formulas as synchronous and asynchronous, as follows:

Definition 2.6 The connectives 2,&,7, T, L and V (respectively ®,®,1,0,! and 3) are classified
as asynchronous (respectively synchronous). Formulas whose main connective is asynchronous (re-
spectively synchronous) are classified as asynchronous (respectively synchronous). Inference rules
that introduce an asynchronous (respectively synchronous) connective are classified as asynchronous
(respectively synchronous).

This classification is rather natural in the sense that all right introduction rules for asynchronous
formulas are invertible, while such introduction rules for synchronous formulas are not necessarily
invertible. However, this classification does not apply well to literals. We use, instead, the adjectives
positive and negative polarity. Moreover, we say that a formula is positive if it is synchronous or a
positive literal, and negative if it is asynchronous or a negative literal. In the asynchronous phase,
composed by sequents in tryadic form - © : T' f# L, rules are applied only to negative formulas
appearing in the list of formulas L, while positive formulas are moved to one of the multisets, © or T,
on the left of the {}, by using the R{} or ? rules. When L is empty, the synchronous phase begins by
using one of the decide rules D; or Ds to select a single formula on which to “focus”: the judgment
F ©: T |} F denotes such a sequent which is focused on F'. Rules are then applied hereditarily to
subformulas of F' until a negative subformula is encountered, at which time, the release rule Rl is
used and another asynchronous phase begins.

We write Fyr © : T' { to indicate that the sequent - © : I {} has a proof in LLF; Fyr © : T | to
indicate that the sequent - © : I' || has a proof in LLF; and F; I' to indicate that the sequent F I is
provable in linear logic.

The following proposition can be proved by a simple induction on the structure of focused proofs.

Proposition 2.7 Let O, I', and A be multisets of formulas and let L be a list of formulas and F' a
formula. If = © : T { L has a proof then - ©, A : T' 4} L has a proof of the same height. If - © :T | F
has a proof then = ©, A :T' || F has a proof of the same height.

The two-phase structure of LLF proofs allows us to collect introduction rules into “macro-rules”
that can be seen as introducing “synthetic connectives”. For example, if the formulas A;, Ao, A3 are
negative formulas, then we can view the positive formula A; @© (A ® Asz) as a synthetic connective
with the following two “macro-rules” below:

FO:T A4 FO:Ti 1Ay FO:Tyf As
"(‘)FllAl@(AQ(X)Ag) |_6:].—‘1,].—‘2~U«A1@(A2®A3)

That is, within the LLF proof system, there are only these two ways to conclude a sequent focused on
this formula without the possibility to interleave other introduction rules (“micro-rules”) with those
that comprise these two macro rules. Furthermore, we can compose a synchronous phase and the
following asynchronous phase to build larger connectives called bipoles. In the example above, if A;
is the formula (A ® B) ® (3z C), then we can replace the “macro-rule” to the left by the extended
“macro-rule”; introducing a bipole:

FO:T,A® B,3xC 1
FO:T | [(A®B) 5 (32C)] & (A2 ® As)
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ASYNCHRONOUS PHASE

FO:THL

r—@:FﬁL,J_[ | FO:TfL,T [Tl

FO:THL,FG
FO.THL,FsG

FO,F:THL
FO:T(L,7F 17l

%]

FO:THL,F FO:THL,G FO:T 1 L, Flc/x]

FO:THLF&G 1] FO:T'{ L,V F V]
SYNCHRONOUS PHASE
. FO:T|F l—@:F/UG[] FO A F
I—@:l}l[] FO: LIV F®G l—@:l}!F[']
Fe:T| P ‘ FO,F:T | Flt/x]
o TP an ¥ o Tjar U
REACTION, IDENTITY, AND DECIDE RULES
FO:T,SHL
- I - I U R | e
I—@:A;l}AP[I] I—@,Aj:iLAp[zl o T LS N
FO: TP FO,P:T| P FO:THN
}—G):F,Pﬂ[Dll FO,P:T 1 2] I—@:Fi}N[RM

Figure 2.6: The focused proof system for linear logic [Andreoli 1992]. Here, L is a list of formulas, ©
is a multiset of formulas, I' is a multiset of literals and positive formulas, i € {1,2}, A, is a positive
literal, N is a negative formula, P is not a negative literal,and S is a positive formula or a literal.

Andreoli [Andreoli 1992] proved the focusing theorem: for any arbitrary (global) assignment of
polarity to literals, a formula is provable in linear logic if and only if it is provable in LLF. Andreoli
considered only global assignments of polarity, that is, if a literal A is assigned positive polarity then
all occurrences of A are positive and all occurrences of AL are negative. We do not show Andreoli’s
proof but a more enlightening and modular proof due to Miller & Saurin [Miller 2007b], showing that
any linear logic proof can be transformed into a focused one by permuting inference rules. We are
going to use this modular proof in Chapter 5 to show the completeness of other focused systems.

Theorem 2.8 Let F' be a linear logic formula. Then, & F is provable in linear logic iff & - : -} F is
provable in LLF.

Proof

To prove completeness of the focused system, we consider the dyadic version of linear logic and
use the method introduced by Miller and Saurin [Miller 2007b], based on permutation lemmas and
focalisation graphs, for which we will need some auxiliary definitions and lemmas.

Definition 2.9 Let o and 3 be two rules and let S be a sequent that could be the conclusion of «
or 3. We say that « permutes over 3, denoted as «/(, if, whenever there is a proof of § where « is
the last rule, there is proof of S where (3 is the last rule.

Lemma 2.10 Let a be an inference rule and 3 be an asynchronous rule. Then o/f.
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Proof This is clear from the invertibility of the asynchronous rules. We only show the case for

®/%&.
FO:T,F,A FO:T,FB

FO:T,F,A&B Ny
FO:T,AFRG,A&B

[]

The ® rule permutes over the & rule as follows:
Fe:TF,A FO:AG Fe:TF,B FO0:AG

o.T.areca © TerTarecs
FOT.AFoG,ALB

[]
[&]

O
Lemma 2.11 If o and B are synchronous rules then «/f.

Proof This is also a standard proof of permutations of synchronous rules. We show some of the
cases, and we invite the reader to Chapter 9 of Saurin’s PhD thesis [Saurin 2008] for the remaining
cases.

o (B/®):

F@IA,F,Fl F@ZB,FQ [®] F@:A,F,Fl [EB]

FO:A®B,F,T,I, FO:AFaG T, Y +O:BT,

0. AeBFaGT,. T, o FO:A0B FoG.T,.T, (]
) (®/E|):

I—G)A,F[t/ac],f‘l 3 F@A,F[t/x],I‘l "@B7F2 [®]

"@ZA,EL’E.F,Fl [] }_G:B,FQ "@A@B,F[t/l‘LFhFQ

F@ZA@B,EI‘.F,FMFQ [ ] ~ F@IA@B,EIL’.F,FMFQ []

e (3/9):

FO:A Ft/z],T (1] FO:A Ft/z],T 5
FO:A® B, Flt/z],T 31 FO:A 3r.FT Bl
0. AeB L ET Y« (e 4sBarT [

d

Definition 2.12 Let a be a rule with active formula F' and G be a formula produced by «. Then we
say that G is the immediate descendant of F' and that all other formulas appearing in the premises
of a are immediate descendants of the same formula appearing in a’s conclusion. In a derivation, the
transitive and reflexive closure of the immediate descendant relation specifies the descendant relation.

Definition 2.13 Let = be a proof of a sequent S. The positive trunk of = is its largest derivation,
with root S, composed only of synchronous rules such that promotion rules produce leaves of the
trunk. The border of a trunk is the set of its leaves, denoted as B(E).

We distinguish each occurrence, F, created by a dereliction rule, by assigning to it a different
number ¢, as in (F)1).

Definition 2.14 Given a positive trunk, II, of the sequent - © : ', we assign to every occurrence of
a dereliction rule, D?, in TI, a unique index (F4) to the occurrence of formula F created. The active
formulas in IT are the active formulas in I" and the indexed formulas (F, ).
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Definition 2.15 Let II be a positive trunk of a proof with root sequent S, let A be the set of all
active formulas in II, and let F' and G be any two formulas in A. Then F' <¢ G iff there exists a
sequent in II containing a negative descendant of F' and a positive descendant of G.

The key observation of Saurin & Miller [Miller 2007b, Saurin 2008] is that whenever F' <; G then
one can safely focus on F before focusing on GG. Hence, the main question is whether the relation
< has minimal elements or in other words, if the relation < is acyclic. If so, then one can use the
relation <7 to determine which formulas to focus on first.

Lemma 2.16 The relation <y is acyclic.

Proof We prove this lemma by induction on the height of the positive trunk II. Consider that S is
the root sequent of II. The base case is trivial since the asynchronous formulas in & are the minimal
elements of <.

Inductive cases: We show that, after an application of any synchronous rule, the relation <y is
still acyclic. The case for the rule 1 is easy since there are no premises. Hence, the relation <y is
empty and trivially acyclic. For the synchronous rules with only one premise, i.e., the rules ®;,3 and
!, we distinguish two cases: (i) if the immediate descendant of the active formula, F', is a minimal
element, then it is easy to see that it must be the case that F' is a minimal element of the relation
<y; (ii) otherwise, any minimal element of the premise continues to be a minimal element in the
conclusion. For the synchronous rules that have more than one premise, i.e., the ® rule, we prove by
contradiction: the application of this rule does not generate a cycle, since if it was the case that a cycle
is generated, then it would have to be that the side-formulas and the subformulas of the principle
formula, that are involved in the cycle, belong to the same branch, and hence it would be the case
that in this branch <y also contains a cycle, which is a contradiction to the induction hypothesis.

It is easy to check that the dereliction rule does not cause any problem. Since all synchronous
rules permute over dereliction rules, we can permute these rules eagerly in a positive trunk, until all
dereliction rules, appearing in the trunk, are at the bottom of the trunk, as illustrates the following
derivation, where A is a set indexed formulas:

H/
Fo:T A

FO:T

[n x D7]

The original positive trunk will have a cycle if and only if I’ contains a cycle, which is already ruled
out from the discussion above. O
The corollary below follows immediately from the proof above.

Corollary 2.17 If F is a minimal element in a positive trunk II, then, in the premises of any
synchronous rule, its subformulas are also minimal elements in their respective branches.

Now that we formalized the focalisation graphs, we use permutation lemmas to transform any
linear logic proof into a focused one, where a minimal element of the graph is focused on first.

Lemma 2.18 Let II be a positive trunk, S be the root sequent of I1 such that that it cannot be the
conclusion of any asynchronous rule, and F' be a minimal element in II. Then, if F is a formula
created by a dereliction, then there is a proof of S where F is created and a rule is applied to it last.
Otherwise, if F' is not created by a dereliction, then there is a proof where a rule is applied to F last.

Proof Since F'is minimal, it must be the case that only synchronous rules separate the synchronous
rule applied to F' and the last rule. Furthermore, since we know that synchronous rules permute over
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each other, we can permute the synchronous rule that is applied to F' down so that it is applied last.
If F is a formula created by a dereliction then we just permute first this rule down, and then the rule
applied to F. O

Now we have all the pieces to complete the completeness proof. Given a linear logic proof, we
check if it is possible to apply any asynchronous formula. If so, from the permutation lemmas, we can
obtain a proof where this asynchronous rule is applied last. We repeat this process to its premises,
until we are not able to apply any other asynchronous rule. At this point, from Lemma 2.18, we
obtain a proof where a rule is applied to a minimal element in the resulting leaves. Repeat this
process, until an asynchronous rule is applicable, and then start from the beginning of this procedure
until there are no more open leaves. The resulting proof is a focused proof. O

Andreoli’s completeness theorem states that, for any assignment of polarities to atoms, a formula
F is provable in LLF if and only if it is provable in linear logic. Although the polarity assignment
of literals does not affect provability, it does affect what synthetic connectives are available and,
therefore, the shape and size of focused proofs. The polarity of literals affects the structure of proofs
because the rules I; and I explicitly refer to the polarity assigned to literals. Consider, for example,
focusing on the positive formula A+ ® N where formula N and atom A are both negative: this leads
to the construction of two macro-rules for this synthetic connective

FO,A: TN FO:T{N

_ I Bt el L — | e L

l—@,A:-iLAi[l] I—@,A:Fl}N{g]lH l—@:AiLAi[Q] FO:TUN
FO, AT AL @ N FO:T,Al Ao N

[124]
[®]

Thus, in order for focusing on the formula A+ ® N to yield a successful derivation, it must be the
case that the formula A is present in either the unbounded or bounded context. On the other hand,
if the atom A is assigned positive polarity then the synthetic connective of A+ ® N is introduced by
a derivation of the form:
FO:Ty AL (R FO: Tyt N
FO:I | AL FO: Ty N
l‘@:Fl,FQU«AJ‘@N

[124]
[®]

Here, there is no restriction imposed on A occurring in either the bounded or unbounded contexts.
One use of polarity assignment known in the literature is its relationship to forward and back-
ward reasoning [Chaudhuri 2008b, Danos 1995, Dyckhoff 2007, Liang 2007] in intuitionistic logic. In
particular, as illustrated in [Liang 2007], if all atoms are given negative polarity, the resulting proof
system models backward chaining proof search and includes uniform proofs [Miller 1991]. If positive
atoms are permitted as well, then forward chaining steps can also be accommodated. Consider, for
example, the following two Horn clauses that specifies, in intuitionistic logic, the Fibonacci numbers:

A = {fib(0,0), fib(1,1), VYnVazVy[fib(n,z)Afib(n+ 1,y) D fib(n+ 2,z + y)]}

where fib(n,N), denotes that N is the n® Fibonacci number. Moreover, consider that we attempt to
prove from A that the 12*"* Fibonacci number is 144, denoted by fib(12,144). If we assign to all fib
atoms negative polarity, then there is a unique focused proof, it is exponential in size and it has a
goal-directed /backchaining behavior. On the other hand, if we assign to all fib atoms positive polarity,
then there are infinitely many focused proofs, all of them have a forward-chaining behavior, and the
smallest one is linear in size.

Although Andreoli considered only global polarity assignments, where all occurrences of a literal
have the same polarity, Miller & Saurin noticed that the completeness proof also works with more
flexible polarity assignments. They consider, for example, an occurrence based polarity assignment
where only the occurrences of a literal that are in the same (sub)tree have necessarily the same
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polarity. This implies that one can assign different polarities to different occurrences of the same
literal. For example, in two different branches of a cut rule, with a literal cut formula, A, one can
assign A as negative in the left branch and A as positive in the right branch:

I—@FlﬂA }—@ZFQTTAJ‘
"@I].—‘l,].—‘gﬂ“

[Cut]

In Chapters 3 and 4 we will exploit the fact that by changing the polarity assignment for literals
we obtain different canonical proofs.

Another important observation about focused proofs is that equivalent formulas can have com-
pletely different focusing behaviors. For example, one can show that the formulas A and A L are
equivalent in linear logic. However, the latter formula is always negative, independent on the polarity
of A. As adding = L to formulas forces the polarity of a formula to be negative, we call it a negative
delay operator. Similarly, ® 1 is a positive delay operator. Sometimes, one might be interested in
stopping a focusing phase so that a synthetic connective does not become too big, that is, it is not
introduced by many types of macro-rules. In these cases, it is useful to add such delay operators to
subformulas. We use delay operators in Chapter 7.

We end this section by pointing out that there are many other systems, in different logics, that,
as in LLF, provide a big-step reading of formulas. Later we will return to some such system, but for
now, we invite a more interested reader to read [Liang 2008] and its references.



CHAPTER 3

Incorporating tables into proofs

We consider the problem of automating and checking the use of previously proved lemmas in the
proof of some main theorem. In particular, we call the collection of such previously proved results a
table and use a partial order on the table’s entries to denote the (provability) dependency relationship
between tabled items. Tables can be used in automated deduction to increase proof search efficiency,
by storing previously proved subgoals, and in interactive theorem proving to store a sequence of
lemmas introduced by a user to direct the proof system towards some final theorem. We incorporate
tables into sequent calculus proofs by performing two steps. First, cuts are used to incorporate tabled
items into a proof: one premise of the cut requires a proof of the lemma and the other premise has
the lemma inserted into the set of assumptions. Second, to ensure that lemmas are not reproved, we
exploit the non-canonicity of focusing systems and specify two specific focusing disciplines for tabled
formulas.

1. We allow only atomic formulas in tables. Then, by exploiting the fact that, in focusing systems,
atoms can be assigned positive or negative polarity, we impose the following polarity discipline:
atoms that are in the table are given positive polarity and those not in the table are given
negative polarity.

2. We restrict tabled formulas to fixed point literals, that is, fixed points and their negations,
and universally quantified fixed point literals, denoting both finite successes and finite failures.
Then, by exploiting the fact that fixed points can be frozen and be treated like atoms, we impose
a second focusing discipline: fixed points that are instances of a tabled formula are frozen and
those that are not instances of a tabled formula are not frozen.

We show that, in some fragments of first-order-logic, the only existing proofs and open derivations
are those that do not attempt to (re)prove a tabled formula: for the first discipline, we use the
hereditary Harrop formulas fragment [Miller 1987] of intuitionistic logic and for the second discipline,
we use the fragment of intuitionistic logic with fixed points used in [Tiu 2005], where only formulas
constructed from positive connectives appear in the left-hand-side of sequents and all fixed points are
noetherian.

References: Parts of this chapter appeared in the conference paper [Miller 2007a] and in the
informal proceedings [Nigam 2008a].

3.1 Introduction

A sequence of well chosen lemmas is often an important part of presenting a proof in, at least, informal
mathematics. In some situations, one might feel that the sequence of lemmas itself could constitute
an actual proof, particularly if the reader of the proof has significant mathematical means to fill in
the gaps between the lemmas. Of course, as lemmas at the beginning of the list are proved, they can
be used to help prove lemmas later in the list.

Although generating lemmas is a well known and critical activity in mathematical proof, most
automated provers in the area of, say, logic programming, deductive databases, and model checking
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usually search for proofs that do not contain lemmas: that is, when proofs are modeled using sequent
calculus, these automated systems search for the so-called cut-free proofs. None-the-less, lemmas (and
the corresponding cut rule) can play an important role in improving the search for or the presentation
of proofs even in these kinds of systems.

Consider attempting to prove the conjunctive query B A C from a logic program I'. This attempt
can be reduced to first attempting to prove B from I' and then C from I'. It might well be the
case that during the attempt to prove C', many subgoals need to be proved that were previously
established during the attempt to prove B. Of course, if proved subgoals can be remembered from
the first conjunct to the second, then it might be possible to build smaller proofs and these might be
easier to find and to check for correctness. Some implemented logic programming systems introduce
tables as a device to store proved literals so that their provability can be used in later attempts to
prove goals. Systems such as XSB [Ramakrishna 1997] and Twelf [Pientka 2005] make it possible
to specify that some predicates should be tabled: that is, whenever an atomic formula with such a
predicate is successfully proved, that atomic formula is remembered by placing it in a global table. In
this way, if the prover attempts to reprove an atom that is already tabled, then the proof process can
be immediately stopped with a success. Besides this aspect of not proving formulas, tabling systems
improve proof-search considerably by also remembering finite failures. Whenever a goal is shown not
be provable, it is also stored in a table and if the interpreter attempts to prove a tabled finite failure,
then it does not proceed.

In this chapter, we consider a general notion of table and attempt to show how proof theory can
account for the following two salient aspects of tables.

(i) Entering tabled formulas into the proof context. Tables will be a partially ordered collections of
formulas and proofs will be modeled using sequent calculus. The cut-rule will be used in a straight-
forward fashion to state the obligation to prove a tabled formula as well as insert that formula into
the main proof context.

(i) Awvoiding proving of tabled formulas. It is easy to provide algorithmic means for making certain
that formulas are not reproved or for not attempting to prove a finite failure (for example, prior to
attempting a proof of a formula, check if that formula is in the table). More challenging is to find
a purely proof theoretic solution in which the only proofs and open derivations that can be built
are those that do not attempt to (re)prove formulas. We achieve this by imposing specific focusing
disciplines. We distinguish two different cases. In the first case, we consider restricting tables to
atomic formulas. Then, we exploit the fact that, in focusing systems for intuitionistic logic, atoms
can be assigned positive or negative polarity and propose the following focusing discipline: tabled
atoms are assigned positive polarity and the remaining atoms negative polarity. The idea will be that
positive atoms are always present in the context. In the second case, we assume that tables contain
only fixed point literals and universally quantified fixed point literals, denoting finite successes and
finite failures. Then, we exploit the fact that fixed points can be frozen, that is, such fixed points
cannot, unfold, thus behaving like atoms, and propose the following focusing discipline: instances of
tabled formulas are always frozen and the remaining fixed points are not frozen. Now, the intuition
is that the provability of a frozen fized point is decided, that is, it is already known if a fixed point is
provable or not.

This chapter is structured as follows. Section 3.2 presents some examples that help to motivate
particular connections between tables and proofs. Section 3.3 illustrates how tables can be inserted
into proofs by using the multicut inference rule (a simple generalization of the cut rule). Section 3.4
presents the focused system LJF for intuitionistic logic that will be used as starting point for the
construction of systems that can incorporate tables. In Section 3.5, we discuss different designs for
focused proofs with cuts. In Section 3.6, we specify the first focusing discipline for tabled formulas,
which is later used in Section 3.7 to ensure that tabled formulas are not reproved in some fragments
of first-order-logic. In Section 3.8, we give a short introduction to a proof theoretic notion of fixed
points. Section 3.9 presents the focused system LJF* that extends LJF with fixed points. In Section
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Figure 3.1: A directed graph: the ellipses represents a section of the graph with a large number of
paths from ag to a4.

3.10, we propose a focusing discipline for tabled fixed points which ensures that these formulas are
not reproved. In Section 3.11, we speculate the use of tables as proof-objects. Finally in Sections
3.12 and 3.13, we illustrate the main results with some examples and conclude by pointing out some
future works.

3.2 Some motivating examples

Consider the graph depicted in Figure 3.1 and assume that its arcs are represented by atomic facts
of the form (adj N1 No) where N7 and Ny are adjacent nodes in the graph. The following two Horn
clauses can be used to describe when there is a path in this graph: Va (path x x) and VaVyVz (adj x z A
path z y D path z y).

Now consider attempting a proof of the conjunctive query path a; a4 A path as ay. The usual
goal-directed logic interpreter will attempt to prove the two conjuncts independently. After making
suitable backchaining steps, both independent attempts will give rise to the same subgoal path as a4.
The logic interpreter will then proceed to construct two (possibly identical) proofs of this subgoal.
Clearly, a superior approach to proving this conjunctive goal would be to first prove the “lemma”
path as a4 and then make that lemma available to the proof of the original conjunctive goal.

A basic question here is: how does one ensure that the assumed lemma is not reproved? If there
are special algorithmic connections between the logic interpreter and a tabling mechanism, as exist
in, say, XSB [Ramakrishna 1997] and Twelf [Pientka 2005], then there are simple solutions to this
problem of reproving lemmas. The question we are concerned with here, however, is whether or not
there is an implementation independent and proof-theoretic solution to this problem of “reproof™.

For a second example, consider the following possible approach to memoization that one could
attempt to use in logic programming languages, such as AProlog, that contain implicational goals
[Miller 1989]. Assume that the formula A is atomic and that we wish to prove the conjunction AAG,
for some general goal formula G. Since the attempt to prove G can reduce to several attempts to
prove A, one might be tempted to rewrite the original conjunctive goal as the logically equivalent goal
AN(A D G). In this rewritten goal, the assumption A is available during the attempt to prove G and,
hence, if A appears as a subgoal to attempt, then the assumption is available to immediately close
the proof. Unfortunately, when moving from AAG to AA (A D G), one is making proof search more
non-deterministic since for every proof that proves A by matching with the assumed version of A,
there is another proof where A is, in fact, reproved. As a result, this naive approach to memoization
has never been successfully used in AProlog.

This example also allows us to notice that our concern for not reproving previously proved formulas
is different from the concerns of relevance logic [Anderson 1975], a logic in which the nature of
implication is changed so that hypotheses are necessary for the proof of conclusions. In the example
above, if the attempt to prove G succeeds without using the assumption A, the implication A D G is
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still provable even if the assumption A is not “relevant” to the conclusion G.

Both of these examples illustrate a need for not only making proved formulas available for reuse
but also enforcing that they are not reproved.

For a third example, consider again the graph depicted in Figure 3.1, but this time assume that
we attempt to prove the goal path as as. By performing backchaining steps, an interpreter will
attempt to prove either the subgoal path as as or the subgoal path as as. While the latter subgoal
is easily provable, the former subgoal is not provable and to check this fact, the interpreter would
need to traverse all paths from a3 to a4. So depending on which backchaining step the interpreter
performs, it would need more or less work to find a proof for this query. However, if an interpreter
already had the knowledge (by looking in a table) that the subgoal path a3 as is not provable, it
could avoid proving it, increasing, hence, proof search efficiency. In this chapter, we also investigate
proof-theoretic solutions to this problem of avoiding proving formulas known to be not provable.

3.3 Table as multicut derivation

In its most general form, a table is a partially ordered finite set of formulas.

Definition 3.1 A table is a tuple 7 = (A, <), where A is some finite set of formulas and < is a
partial order relation over the elements of A.

A table is thus intended to be a structured collection of formulas, which are all provable from
some fixed context. The relation B < C' means that the formula B is provable and is used during
a proof attempt of C: if the attempt to proof C leads to an attempt to prove B, that attempt can
immediately stop successfully.

The following inference rule, called the multicut rule, is often used as a technical generalization to
the cut rule to help prove cut-elimination theorems (see, for example, [Gentzen 1969, Slaney 1989)]).

r—B, --- I'—B, By,...,B,,I' — C
r —ca

e (n > 0)]

Notice that if n = 1, this rule reduces to the usual cut-rule (for a single conclusion calculus), and
if n = 0, this rule is essentially a simple “repetition.” If n > 1, this rule can be seen as encoding n
separate applications of the cut-rule. We say that the formulas B,..., B, are the cut-formulas of
this instance of this multicut rule.

The following definition describes how a table can be translated to a collection of multicut inference
rules.

Definition 3.2 Let 7 = (A, <) be a table. The multicut derivation for 7 and the sequent S =
I' — G, written as med(7, S), is defined inductively as follows: if A is empty, then med(7,S) is the
derivation containing just the sequent S. Otherwise, if {A4;,..., A,} is the collection of <-minimal
elements in 4 and if IT is the multicut derivation for the smaller table (A\ {A1,..., A,}, =) and the
sequent I', Ay, ..., A, — G, then mcd(7,S) is the derivation

II
r—A4, ... I'—A, IA,,...,A, — G
' — G

[mc]

Multicut derivations are always open derivations: if the table 7 contains m elements, then a multicut
derivation using 7 must have m + 1 open premises. A proof of a multicut derivation is any (closed)
proof that extends that open derivation.
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To illustrate this definition, consider the graph example in Section 3.2: let I" contain the encoding
of the original adjacency information as well as the specification of the path predicate, and consider
the table that contains just the atomic formula path a3 a4 and the trivial partial order on that formula.
The following is the multicut derivation for that table and the sequent I' — path a1 a4 A path as ay:

I' — path a3 a4 I', path a3 ay — path a1 a4 A path as ay
I' — path a1 a4 N path as ay

[me]

By using the cut, it was possible to introduce the lemma path as a4 in the context of the rightmost
branch. The left premise requires showing that there is, in fact, a path from a3 to a4, while the right
branch attempts to show the original conjunctive goal under the assumption that this path exists.
As we pointed out earlier, there are proofs of the right-most premise where this lemma is not reused
but reproved. In the next sections, we exploit the notions of focusing and polarity in order to provide
method for enforcing reuse.

In the rest of this chapter, we shall impose some restrictions to tables, namely, in Section 3.7,
tables contain only atoms; and later, in Section 3.10, tables contain fixed points, negated fixed points,
universally quantified fixed points, and universally quantified negated fixed points, where negation is
intuitionistic, that is, —F is defined as F' O L.

3.4 Focusing and polarities via LJF

We present here the LJF focused proof system for intuitionistic logic of Liang & Miller [Liang 2007,
Liang 2008]. The connectives of first-order intuitionistic logic will be the usual ones except that we
shall use two conjunctions, written as A™ and A™: these two conjunctives are logically equivalent but
their role in proof search will be different. (In particular, A* resembles the linear logic multiplicative
conjunction ®, while A~ resembles the additive conjunction &.) We shall classify the connectives A~
D, and V as asynchronous (their right introduction rules are invertible), while the connectives A1, V,
3, true and L are classified as synchronous (their right introduction is not necessarily invertible).

As in linear logic, the synchronous/asynchronous dichotomy of non-atomic formulas will also be
extended to atomic formulas: some atoms are to be considered as part of the asynchronous phase and
the rest will be considered as synchronous. In the LJF proof system, a global and fixed assignment
of positive or negative polarity to atomic formulas is assumed: such a mapping can give all atoms
positive polarity or all atoms negative polarity, or, in fact, some atoms can be given positive polarity,
while the others are given negative polarity.

The LJF focused proof system for intuitionistic logic is given by collecting together the inference
rules in Figures 3.2 and 3.3. These figures use the following syntactic variables: A,, denotes a negative
atom, A, a positive atom, P a positive formula, IV a negative formula, N, an atom or a negative
formula, and P, an atom or a positive formula. Also I" and © are both multisets of formulas and T'
contains only negative formulas and positive atoms. Finally, ¢ is either 1 or 2 and y is not free in any
formula of the conclusion of rules 3; and V,.. The LJF proof system also has four types of sequents.

1. The sequent [I'],0 — R is an unfocused sequent. Here, I contains negative formulas and
positive atoms, and R is either a formula R or a bracketed formula [R];

2. The sequent [I'] — [R] is an instance of the previous sequent where © is empty;
3. The sequent [I'|—p— is a right-focusing sequent (the focus is B);
4. The sequent [I] RN [R]: is a left-focusing sequent (with focus on B).

As an inspection of the inference rules of LJF reveals, the search for an intuitionistic focused proof
is composed of two alternating phases, as in linear logic. The asynchronous phase applies invertible



26 Chapter 3. Incorporating tables into proofs
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Figure 3.2: LJF rules for introducing logical connectives.
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Figure 3.3: The LJF structural rules.
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(asynchronous) rules until exhaustion: no backtracking during this phase of search is needed. The
asynchronous phase uses the first type of sequent above (the unfocused sequents): in that case, ©
may contain positive and negative formulas. The proof system for LJF processes the formulas in © as
follows: if a given member of O is a negative formula or a positive atom, then that formula is moved
to the I" context (by using the []; rule), also called the bracketed context of a sequent; otherwise, the
formula is a positive non-atomic formula and an introduction rule (either /\;r, Vi, J; or false;) is used
to decompose it. The end of the asynchronous phase is represented by the second type of sequent.
Such a sequent is then established by using one of the decide rules, D, or D;. The application of one
of these decide rules then selects a formula for focusing and switches proof search to the synchronous
phase, represented by the third and the fourth type of sequents. This phase then proceeds by applying
sequences of inference rules on the unique focused formula: in general, backtracking may be necessary
in this phase of search. Moreover, we classify the rule A;F, A, Vi, 3;, false, Dp, Vy, [0, []r, By and R,
as asynchronous rules since they initiate the switch from focused to unfocused sequent (the R; and
R, rules) or they propagate unfocused sequents upwards. The remaining rules are called synchronous
rules.

Theorem 3.3 Assume some arbitrary but fized polarity assignment to atomic formulas. Let B be an
intuitionistic logic formula and let B’ be a formula that results from replacing different occurrences
of A in B with either AT or A=. The formula B is provable in intuitionistic logic if and only if B’ is
provable in LJF.

Proof Here, we just sketch the proof given by Liang & Miller in [Liang 2008]. The soundness
direction is straightforward, as it suffices to drop the focusing annotations. For the completeness
direction, Liang & Miller use the grand tour through linear logic, illustrated by the following diagram:

0/1 -1/41
A ——=F 1t
Fr Fo

To prove that a (focused) system, denoted by F¢, is complete with respect to LJ, denoted by Fr,
one must provide two translations, 0/1 and -1/+1. The former translation is from unfocused intu-
itionistic logic formulas to focused linear logic. The latter translation is from the focused system (in
this case LJF) to focused linear logic. Then, one finishes the proof by showing that any intuitionistic
formula provable in linear logic when using the encoding 0/1 is also provable when using the encoding
-1/+1. The translation 0/1 for LJ is depicted in Figure 3.4. A more interested reader can find also
the -1/+1 translation for LJF in [Liang 2008]. O

3.5 Focused Proofs with Cuts

We now move our attention to focused proofs containing cuts. We distinguish two different types of
cuts: intraphase cuts that can appear anywhere inside (intra) focusing phases and interphase cuts
that can only appear between (inter) two focusing phases. The original LJF cuts, proposed by Liang
& Miller [Liang 2008], are examples of intraphase cuts:

r,e —r [],0,P—R
r,0,0/ —R

[, — N, [I,N,],0 — R
[FL@a@/ — R

[Cutt]

[Cut™]
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Figure 3.4: The 0/1 translation used to encode LJ proofs into linear logic.
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The cut rules Cut™ and Cut™ can appear in the middle of asynchronous phases, while the remaining
cut rules can appear in the middle of synchronous phases. As Liang & Miller were mostly interested
in showing that the cut-elimination theorem holds in LJF, they needed this collection of cuts as a
technical device to construct the cut-elimination algorithm by permuting cuts upwards.

Although they are useful to formalize the cut-elimination procedure, intraphase cuts seem to have
the wrong focusing flavor, from a proof search perspective. In focused systems with intraphase cuts,
one can no longer perform a big-step reading of formulas, as one can introduce a synthetic connective
(or a bipolar) with a derivation containing cuts, and, hence, the corresponding macro-rules would
not only depend on the formulas in the conclusion sequent, but also on the cut-formulas introduced
above by intraphase cuts.

On the other hand, interphase cut rules, appearing between focusing phases, do have a better
focusing flavor, as one can still perform a big step reading of formulas.

] — [P [T, P — [R] ] — N [IN] — [R]

] — [R]

[Cut,] [Cuty)

These rules cannot be used inside a synchronous phase, since neither their premises nor their conclu-
sions have a focused formula, nor can they be used inside an asynchronous phase, since their conclusion
does not have any unbracketed formula. Moreover, one of their premises must be the conclusion of
an asynchronous phase and the other premise must be either the conclusion of a synchronous phase
or of another interphase cut rule. Hence, in general, any focused proof is now composed of three al-
ternating phases: seeing from bottom-up, an asynchronous phase, where only asynchronous rules are
applied, a cut phase, where only interphase cut rules are applied, and then two phases in parallel, a
synchronous phase, where only synchronous rules are applied, and the following asynchronous phase.

Since tables are used to reduce the overall size of proofs, by eliminating redundant subproofs of
the same goal, and we incorporate tables into proofs by using (multi)cut rules, we would like to use
cut rules that do not limit how much we can “compress” proofs. We show that, in a fragment of
logic, we can safely use interphase cuts, instead of intraphase cuts, and still obtain proofs of the same
size. More precisely, for any given LJF proof that contains intraphase cuts, but no occurrences of the
rules A, and Vi, there is an LJF proof of the same sequent and of the same size that contains only
interphase cuts.
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Definition 3.4 Let = be an LJF proof. The size of = is the number of occurrences of logical and
identity rules in =.

Lemma 3.5 All LJF synchronous rules permute over the cut rules Cut™, Cut; and Cuty , without

increasing the size of the proof.

Proof We begin with the permutability cases with the Cut™ rule:
I'—n — I', No|—a— I', Ng]—a— ', No|—
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Now we show the permutability cases with the Cut]™ rule:
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Lemma 3.6 The cut rules Cut™ and Cut™ permute, without increasing the size of the proof, over
all LJF asynchronous rules except the rules A7 and V.

Proof The permutation cases are similar to those used in the standard proof of cut-elimination.
We show here some cases:
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O
The rules V; and A, cause a problem because of their additive behavior. So if we attempt
to permute a cut over them, we need to copy proofs, as illustrates the following transformation:
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In the derivation to the right, the proofs for the premises are duplicated increasing the size of the
proof. Later, we restrict the language of logic programs so that Vv; and A, rules are not used or
restrict cuts to appear only at the bottom of proof trees.

Theorem 3.7 Let = be an LJF proof of a sequent S that contains intraphase cuts, but no occurrences
of the rules A, and V;. Then, there is a proof of S of the same size that only contains interphase
cuts.

Proof We proceed by induction on the number of intraphase cuts. From the previous lemmas
and the following transformations, we can construct from = a proof of the same size as the original
proof, but that contains only interphase cuts. We first permute all the cuts that appear inside a
synchronous (respectively asynchronous) phase down (respectively up) to the beginning (respectively
end) of the phase and then apply the transformations below, that replace instances of intraphase cuts
by interphase cuts. Notice that these transformations do not increase the size of proofs.
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3.6 A specific polarity discipline for tabling

3.6.1 How to provide an atom with a polarity?

We now return to the Fibonacci example discussed at the end of Chapter 2. Consider, for example,
the Horn clause specification of the Fibonacci numbers f,, composed of the three formulas:

A = {fib(0,0), fib(1,1), VnVaVy [fib(n,z) AT fib(n+1,y) D fib(n+ 2,z + y)] }

If all atomic formulas are given negative polarity, then there exists only one focused proof of the
sequent [A] — fib(n, fy): that proof has size exponential in n and can be classified as a “backward
chaining” proof. On the other hand, if all atomic formulas are given positive polarity, then there
are an infinite number of focused proofs all of which are classified as “forward chaining” proofs: the
smallest among these proofs is of size linear in n. Such exponential differences in size are clearly
important when one is searching for proofs, as in, say, logic programming and automated reasoning.
To see why there are bottom-up proofs of arbitrary size, let 7 > 1 and let F; be the set of atomic
formulas {fib(0,0), fib(1,1),...,fib(j, f;)} and consider the following derivation within LJF.

[A, .7:]', ﬁb(Z + 2, g + h)] — ﬁb(lOO, flOO)

I, I, fib(i+2,9+h
7] (A, Fjl=b(it1,m— 7] (A, Fj] Bolr2erh),

VnVzVy [ﬁb(n,x)/\+ﬁb(n+1,y)3ﬁb(n+2,x+y)]

[
V1, 2]

(A, Fjl=fb(i,g)— fib(100, f100)

[Aﬂfj]

fib(100, f100)

[A, Fj] — £ib(100, f100) D]

In this derivation, the decide rule selected the clause providing the recursive calls of the logic program.
After instantiating the binders n, x, and y with integers i, g, and h, we are forced (by polarity
considerations) to declare that fib(i,g) and fib(i + 1, h) are members of F;. Thus, 0 < i < j — 1.
Furthermore, proof search continues by proceeding up the right-most branch of the proof: thus, the
effect of focusing on the clause for recursion is that the sequent [A, F;] — fib(100, fi00) is reduced
to the sequent [A, F;, fib(i + 2, g + h)] — £ib(100, fi00). If i = j — 1 then this latter sequent is equal
to [A, Fj4+1] — £ib(100, fi00) and in this case, we have made process in computing more of the table
of Fibonacci numbers. However, in the case that 0 <i < j — 2, then F; U{fib(i + 2,9+ h)} = F;, in
which case, no progress has been made in that computational effort. Of course, such non-progressing
inference steps can be repeated arbitrarily. (We return to this issue in Section 3.6.3.).
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An example of mixing polarity assignments was given by Jagadeesan, Nadathur, and Saraswat
[TJagadeesan 2005]. They describe a proof system that allows one to dictate the use of backward
and forward chaining in different parts of a proof system. Backward chaining was used to model
proof search in logic programming (particularly, in AProlog) and forward chaining was used to model
constraint based reasoning (as in concurrent constraint programming). Their proof system can be
embedded and generalized within LJF [Liang 2007] by assigning to the atoms that represent con-
straints a positive polarity and to the other atoms that represent the rest of the logic program a
negative polarity.

In this chapter, we consider another approach to polarity assignment that can be motivated
operationally as follows: a typical logic programming interpreter has, at any moment, a number of
goals to attempt conjunctively. If the interpreter succeeds in proving one of these goals, that goal can
be “tabled”; that is, remembered as a success that can be used to help prove other goals. We shall
link polarity of atoms with membership in the table: an atom has negative polarity if it is not in the
table (the default assumption when the search for a proof starts) and has positive polarity once it is
proved and added to the table. Another aspect of this operational description is that the polarity of
some atoms can change from negative to positive. The examples mentioned before were based on a
global and rigid polarity assignment.

3.6.2 The LJF' proof system

We now need to translate the operational intuition for polarity assignment given above to a more
declarative and proof theoretic one. We do this by building the proof system LIF' from the system
LJF that attempts to incorporate a table.

Since polarity assignment is not fixed, we will have every sequent carry its own polarity assignment.
In particular, we add to the sequents of LJF a set, written usually with the syntactic variable P, that
contains the atoms that have been declared to have a positive polarity. The three kinds of sequents
in LIF" are given as follows:

P(l,6 — R P; (0] P;(r] 2 [R]
An occurrence of an atom within a given sequent is declared as positive if it occurs in P and is
declared as negative otherwise.
The inference rules of LJF are modified as followed to yield the LIF" proof system: in each case,
the inference rule of the LJF* proof system takes the same name from the corresponding rule in LIF.

1. The introduction rules in Figure 3.2 and the bracket rules [J, and [|; translate directly to the
corresponding inference rules in LIF! by simply adding the “P;” prefix to all sequents in the
rule.

2. The decide rules D;, D,, the release rules R;, R,, and the initial rules I; and I,. in Figure 3.2
are similarly modified by the addition of the “P;” prefix. In these cases, however, the notion of
negative and positive formula may require checking if an atomic formula is or is not a member
of the P declaration. For example, the two initial rules are given explicitly as the following two
inferences.

——  [I;, provided A ¢ P] - .
P A A PIAT s [I., provided A € P]

Besides these rather obvious and direct embellishments of sequents and inference rules using this
new declaration, we add one more inference rule. In particular, we add a “polarized” version of the
atomic interphase multicut rule mc given below, where Ay, ..., A, are atomic formulas:

Pl — A4 - P — A, PU{A1,..., A} T Ay, .., Ay — [R]
P;[I] — [R]

[me)]
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In that inference rule, the atomic formulas A1, ..., A, are proved in the left-premises from the same
set of assumptions I, containing the same table (i.e., positive polarity assignment P). If we read that
inference rule bottom-up, then the search for a proof of the formula R moves from one with table P
to one with table P U {Ay,..., A,}. Notice that if a proof has no occurrences of the multicut rule
then the context “P;” is the same in all sequent occurrences in that proof.

Lemma 3.8 Let Z be a cut-free LIF* proof of the sequent S, whose polarity context is P, and let S’
be an arbitrary sequent in Z. Then, the polarity context of S’ is equal to P.

Proof Simple induction on the height of cut-free proofs. O

As a rule, we always consider that the polarity context of the endsequent of an LJF proof is
empty, that is, its table is empty. To incorporate a table into a LIJF' proof, we use the multicut
derivation obtained from it as described in Section 3.3. Only that we now use the polarized multicut
rule above to construct these derivations. Given these constraints, it is easy to check that it is always
the case that in every sequent of a proof the polarity context is contained in the bracketed context.

Lemma 3.9 Let Z be an LJF* proof of the sequent (; [] — F and let S be an arbitrary sequent in
= with polarity context P and bracketed context I'. Then, P CT.

Proof Simple induction on the height of proofs. The polarity context can only change when the
polarized multicut rule mc is used. O

Proposition 3.10 Let B be some intuitionistic formula and let B’ be a formula that results from
replacing different occurrences of A in B with either AT or A=. Then, the set of atoms P intuition-
istically entails the formula B if and only if the sequent P;[P] — B’ is provable in LJF".

Proof The soundness direction is straightforward. We just need to remove all focusing annotations.
For the completeness direction we use the completeness result for LJF (Theorem 3.3): since the
polarity assignment of atoms in LJF does not affect provability and LJF is complete and admits cut
elimination, there is a cut-free LJF proof of the sequent [P] — B’ where all atoms in P are assigned
with positive polarity and the remaining atoms with negative polarity. Now, we just add the polarity
context P to all sequents in this LJF proof and obtain a proof of P;[P] — B’ in LJF'. O

3.6.3 Dropping the release-left rule

There is, however, a serious problem remaining to be addressed regarding ‘reproving”™ recall again
the Fibonacci example of Subsection 3.6.1. When doing forward chaining from a database, any atom
that is inferred via forward chaining can be continually reproved and added again and again to the
left-hand-side context. We now address this source of reproving.

Given the polarity discipline maintained in LIF* proofs, there is a connection between the notion
of polarity assignment, which involves (prior) provability of an atomic formula, and general (focused)
provability, which uses polarity assignments to decide the shape of proofs. This linkage provides us
with an opportunity to make an optimization to the LJF* proof system. Consider an instance of the
“release-left” rule, namely,

P; [, P] — [R]
P;[[), P — [R]

P; 11 % (R

([l
[

where P is a positive polarity atomic formula. The assumption that P is a positive atom means that
P € P and combining this with the invariant P C I' means that ' U {P} = T". Thus, whenever the
left-focus is on a positive atom, we can be guaranteed that we have made no progress in proof search,
since that atom is already part of the set of hypotheses. Hence, to disallow reproving a positive
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polarity atom via forward-chaining steps, we ensure that proof search in this case fails: one way to do
that is to remove all occurrences of the release-left rule R; in which the focus is on a positive atom.
In particular, let LJF® proof system to be the result of deleting those occurrences of the release-left
rule R; from LJF!.

Notice that one could also imagine disallowing []; to bracket positive polarity atoms. However,
this restriction would be too strong, as it would disallow not only forward chaining proofs, but also
desired proofs, such as when a goal has a positive polarity atom as an hypothetical assumption. For
example, the sequent {A}; [A] — A D G would not be provable if we restrict the rule [|; in the way
described before.

In order to prove the completeness of LIF: (Proposition 3.12), we need the following lemma,
which is proved by a simple induction on the structure of LJF* proofs.

Lemma 3.11 The border of the positive trunk of an LJF' -proof of P; [T EiN [G] contains at most one

left-focusing sequent and that sequent is of the form P; [T 5, [G], for some formula B. The border
of the positive trunk of an LJF'-proof of a right-focusing sequent contains no left-focusing sequent.

Proposition 3.12 Let B be some intuitionistic formula and let B’ be a formula that results from
replacing different occurrences of A in B with either At or A=. Then, the set of atoms P intuition-
istically entails B if and only if there is an LJF" proof of P;[P] — B'.

Proof Soundness is again straightforward. We just need to remove all focusing annotations. For
completeness, assume that P is a finite set of atoms and that they intuitionistically entail B. Then,
by the completeness of LJF' proof (Proposition 3.10), there is an LJF" proof = of P;[P] — B'.
We now proceed by induction on the number of occurrences in = of R; inference rules applied to
positive atoms. If that number is 0, then Z is also an LJF® proof. Otherwise, an occurrence of the
R; inference rule on a positive atomic formula A must occur on the border of the positive trunk of
a left-focused sequent of a sequent, say P;[['] — [G], in 2. Such an occurrence has the following
shape, modulo the order of the premises.

PRA— \p = =,
|14 (6] Pilll-¢,— - Pi[l-g,—
[Dbm X /\j]
Pl =16 P
P — 6]

Here, n > 0. Given that P C T, it is the case that Z; is also a proof of the root sequent P; [I'] — [G]:
hence, the entire proof figure above can be replaced by Zg. As a result, the number of occurrences of
the R; rule applied to positive atoms has been reduced by at least one. O

3.7 Tables of finite successes

3.7.1 The Horn clause case

Consider the following description of two classes of (annotated) formulas.

G:=Al|true| GiATGo | G1VGs | F2 G
DZ:A|D1/\_D2|GDD|V?L’D

Here, A-formulas are atomic formulas, D-formulas are Horn clauses, and G-formulas are the goals or
queries that are used as the body of the Horn clauses. Notice that the G-formulas allow arbitrary
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occurrences of right-synchronous connectives (that is, a connective whose right-introduction rules
is a right-focus rule in Figure 3.2). Similarly, the top-level connectives of D-formulas are the left-
synchronous connectives (that is, a connective whose left-introduction rules is a left-focus rule in
Figure 3.2). The G-formulas are encoded using synchronous connectives only, while the D formulas
are encoded using asynchronous connectives only: since a G-formula can occur negatively within a D
formula, the synchronous connectives of the embedded G-formula add to D-formulas asynchronously.
Therefore, LJF® positive trunks concluding a sequent which focuses on a D-formula on the left have
to be of the following form, modulo the order of the premises:

A
Pl = [R  Pi[l]-a,— -+ Pi[l]-a,—
) [D1,m x AF]
P; [ = [R]
Here, n > 0 and A, Ay, ..., A, are atomic formulas. Moreover, when it comes to sequents [['] — B

that we shall consider in this Horn clause case, the formula B will always be a goal formula and T" will
always be a set of Horn clauses. As a result, proofs involving Horn clauses will have asynchronous
phases that are essentially empty.

Proposition 3.13 Let P be a set of atomic formulas, let A be an atom, and let ' be a finite set of
Horn clauses. Let = be any LJF* proof of the sequent P; [I] — A. Then every sequent occurring in
= is either of the form

P[P T — A, P[P, T]— [A],  Pi[P.Tl-g—, or Pi[P, ]2 4,

where A’ is some atomic formula and P’ is the disjoint union of P and some set P’ of atomic
formulas.

This proposition is proved by a simple induction over the structure of LJF. proofs. It is interesting
to notice the following about restricting our attention to Horn clauses.

1. There are no occurrences of asynchronous inference rules in Z: that is, if = contains the sequent
P’ [I'], A — B then A is empty and B is atomic.

2. Finite sets of Horn clauses I' can be restricted to just a single Horn clause, namely H = A, D.
If this is done, the decide-left rule D;, when used to prove the sequent P’; [P/, '] — [A'], picks
between an atom in the “table” P’ and the (entire) logic program H. The A; is then used to
select which member of I" to (continue to) use as its focus.

3. When moving from conclusion to premise, if the left-hand context changes, then the inference
rules where that change occurs is an instance of the mc rule. In cut-free proofs, the left-hand
sides of all sequents occurrences are fixed.

We now show that when an atom is tabled, that is, it is assigned positive polarity and is in the
bracketed context of the endsequent, then the only possible proofs are those for which any subproof
of this tabled atom is bounded by a small number of decide rules.

Definition 3.14 The decide-depth of a focused proof = is the maximum number of occurrences of
decide rules (i.e., D, and D;) on any path from the root to a leaf in Z.

Proposition 3.15 Let I' be a finite set of Horn clauses, G be a G-formula, P be a set of atoms,
and A € P be an atom. Let = be an arbitrary LJF' cut-free proof of the sequent P;[P,T] — G.
Then all occurrences of the sequent P;[P,T'| — A and P;[P,T]—a—, in =, are the conclusion of a
derivation of decide-depth of at most one.



36 Chapter 3. Incorporating tables into proofs

Proof We check all possible ways one can prove the sequent P;[P,I'] — A. The other case, for
the sequent P;[P,T']—4—, is similar.

Seen bottom-up, the first rule must be [],- since the atom A is positive. Now we check what are the
possible ways to conclude the sequent P;[P,I'] — [A]. There are two alternatives, either focus on
the left on a D-formula, or on the right. Let us consider the former case first. As described above, if
we focus on the left on a D-formula, this formula is completely decomposed, yielding a premise where
an atom is focused on the left. However, it cannot be the case that this premise is the conclusion of
any rule in LIJF’ : it cannot be the conclusion of the initial left rule because the atom A is on the
right-hand-side and has positive polarity; nor can it be the conclusion of the R; rule because R; is
restricted to non-atomic formulas. The only remaining option is to focus, instead, on the right, which
can then only be the conclusion of the initial rule .. O

The proof theory that we have been presenting here deals directly only with the use of tables
within proofs and not with their discovery. We now consider briefly an example of how a table can
be built in the case of Horn clauses. Assume that all atoms are given a negative polarity and let = be
a cut-free LJF proof of [I'] — [G], where T is a finite set of Horn clauses and G is some G-formula.
Notice that if E contains the unfocused sequent [I'] — [G’] for G-formula G’, then IV =T'. Let table
T be the ordered set of atoms (A, <) where A is the set of atomic formulas A such that [I'] — [A]
occurs in 2 and where < is defined as follows: let <’ be the order relation defined on occurrences of
atoms that is given by the post-order traversal (i.e., process a node’s premises before processing the
node) of =. Then, A < A’ is defined to hold if and only if there is an occurrence of atom A that is
<’-related to all occurrences of atom A’.

The following proposition shows that it is trivial to extend a multicut derivation that is built from
such a table.

Proposition 3.16 Let I' be a set of Horn clauses and let E be a LJF cut-free proof of [I'l — [G],
where all atoms have negative polarity. Let T be a table obtained from = using the post-order traversal
described above. There exists a proof for med(7,[.|;T — G) such that all of its added subproofs have
decide-depth of at most one.

Proof Proof by induction on the length of the table’s longest chain. In the base case, such a chain
contains just one atomic formula, yielding a multicut M containing only one cut. To complete the
open premises of M, one would need to decide on an atom that is already present in the context of
the proof, and, therefore, completing M with derivations containing only one decide rule.

Now the inductive step: Consider that the sequent P;[I' UP] — [A;] is a sequent branch in the
multicut derivation M. We can find a proof for this sequent, with one decide left rule, by proceeding
as follows: we check in Z the formula F' that was focused on to prove A;. After this rule is performed,
it has to be the case that the body of F' is decomposed and finishes with previously proved atoms,
that is, a positive atom, focused on the right, and, therefore, the proof must finish with initial right
rules. O

We can extend, in a straightforward way, the table extraction algorithm, described before, to also
extract tables from LJF proofs that have an arbitrary polarity assignment. The key observation is
that we can simulate forward chaining steps in an LJF proof by using multicuts in the corresponding
LJF®. proof, as illustrates the following transformation, where the atom A has positive polarity on
the derivation on the left and P’ = P U {A4}:

—_

= e
LA — @] Ry ] P;[[-6— P;[I % (4] Dll]
L N e PiIr] 2% (A
] GoA ted P — A ([, D1 Py [T, Al — [
DI [mc]
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We modify the algorithm above by also checking in the LJF proof for forward chaining steps, that is,
when R; rule is applied to a positive atom A. In this case, to construct the partial ordering =<', we
process A before we process the nodes in =,

As an example of building such a table, consider the Fibonacci example from Section 3.6.1. By
assigning all atomic formulas negative polarity, a cut-free proof of fib(n, f,,) has size exponential in
n. The table constructed from that proof, however, has size linear in n: in fact, the table encodes
the list

ib(0,0), fib(1,1), ..., fib(n, f)-

The multicut-derivation built from that table has n + 1 subproofs, all of which are essentially trivial
proofs that validates that, for example, fib(i + 2, F; 1) follows from fib(i + 1, F; ;1) and fib(i, F;) by
a simple addition.

To further illustrate, consider the example in Section 3.2, where the subgoal path a3 a4 is tabled:
that is, path a3z a4 € P. Any proof of the rightmost branch of the multicut derivation obtained will
never reprove the lemma path as ay:

[11]

P; F7path as a/4] adJa_lag) [adjal 013] [D]
P; [I', path a3 as] — [adjay as] R, l [Z:]
P: [I‘,path as 04}*adja1 az— " P; [F,path as a4]*path az ayg I/\r+]
T

P; [F,path as a4]_adja1 asAtpath ag ay™—

P; [T, path as a4] — [path ay a4]

The memoization example of Section 3.2 can be addressed similarly: instead of doing the goal reduc-
tion illustrated on the left below, we use a multicut as is illustrated on the right:
I — A r—a P;— A PU{A};[l,A] — [AAT G]
I - AANG P;[I] — [AAT G

[me.]

In this way, all attempts to prove A on the right will be bounded derivations of decide-depth of one.

One might consider that a table extracted from a proof is, in fact, a legitimate proof object since it
is relatively easy to check that a table encodes a proof by first building a multi-cut derivation for it and
then extending it to a proof. For example, within the proof carrying code framework [Necula 1997],
it might be less expensive to transmit an ordered collection of atoms in order to represent a proof
than to send some more complex representation of a sequent calculus proof tree. We will return to
this aspect of tables in Section 3.11.

3.7.2 More than Horn clauses

The Horn clause subset described above is a natural class to consider since it involves only synchronous
inference rules. Some asynchronous inference rules can also be accommodated in a similar fashion
and this allows us to consider tabling in a richer setting than Horn clauses. In particular, consider
allowing logic specifications (logic programs) to be the D-formula specified by the following grammar.

N::A|N1/\7N2‘GDN|VIN
G:=true | A|Gi N"T Gy |G1VGy | 32G |V G| DD G
D= A|N| DAt Dy | 32D

The class of all first-order hereditary Harrop formulas [Miller 1991] can be seen as being N-formulas as
long as the positive occurrences of conjunctions in N are annotated as negative (that is, as A™). The
notion of uniform proofs (goal-directed proofs) with respect to first-order hereditary Harrop formulas
for this subset of intuitionistic logic corresponds to using LJF with all atoms given a negative polarity.
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Since focused proofs are more general and flexible than uniform proofs, we will be able to consider
the relationship between proof search and tabling in a larger subset of intuitionistic, with existential
quantifiers and positive conjunctions on the left. Notice that these positive connectives appearing in
D-formulas are decomposed in the asynchronous phase, by left-asynchronous rules, until there are
only N-formulas present in the context. Moreover, all LJFY positive trunks concluding a sequent
focused on the left on a N-formula have the following form, modulo the order of the premises:

Pl —I[R]  P;[l-g,— P;ll-¢,—
P;[1] - [R]
Here, n > 0, A is an atomic formula and G4, ..., G, are G-formulas. From the figure above, it should

be clear that if all atoms have negative polarity, then LJF® proofs obtained from N-formula logic
specifications and uniform proofs coincide: the left-most-premise must be the conclusion of an initial
left rule, I;, and R must be A. Therefore, these derivations correspond to the backchaining steps used
in uniform proofs.

The restricted syntax for the formulas presented above translates to the following invariants re-
garding sequent occurrences within LIJF® proofs involving these formulas.

Lemma 3.17 Let = be an LJF'. proof of the sequent P; [P,T],0 — G, where T is a finite set of
N-formulas, © is a finite set of D-formulas, P is a finite set of atoms and G is a G-formula. Sequents
that occur in Z are of the following three kinds:

1. an unfocused sequent P'; [P, 1'],0" — G’ or P';[P',T'],0' — [G"],
2. a right-focusing sequent P'; [P, T']|—q—, or
3. a left-focusing sequent P'; [P’ T’] o, [G],

where P’ is a set of atoms that contains P, I' is a set of N-formulas that contains I, © is a set
of D-formulas (no relationship to © implied), G’ is some G-formula, and G" is a positive or atomic
G-formula.

We show that if an atom is tabled, then the only possible proofs are those for which all the
subproofs of this atom are bounded by a small number of decide rules.

Proposition 3.18 Let I be a finite set of N-formulas, © and ©' be finite sets of D-formulas, P be
a set of atoms, G be a G-formula and A € P be an atom. Let = be a cut-free proof of the sequent
P;[P,T],©0 — G. Then all occurrences of the sequent P;[I'],0 — A and P;[I']—a— in = are
the conclusion of a derivation of decide-depth of at most one.

Proof We again check all possible ways to prove the sequent P;[I],©" — A. The other case, for
the sequent P; [I']—4—, is similar.

The reasoning is close to the one done in the proof of the Proposition 3.15. Seeing from bottom
up, one must apply asynchronous rules, decomposing ©’, until the asynchronous phase ends. Since
no branching occurs in this phase, the resulting premise is of the form P;[I""] — [A], where T"” is
a set of N-formulas containing I'. Now, there are two alternatives, either focus on the left, on a
N-formula, or on the right. Let us examine the former case. If we focus on a N-formula on the left,
then, as described above, the resulting synchronous derivation must contain a premise focused on the
left on an atom. This premise is not a conclusion of any rule in LJF® because A has positive polarity
and the rule R; is restricted to non-atomic formulas. Hence, there are no proofs by focusing on the
left. Therefore, one must focus on the right and finish with an initial right rule. O

Before, in the Horn theory case, as the asynchronous phases of proofs were empty, there were no
occurrences of the rules D,., 3;, and V,.. Since these are the only rules that can introduce a new formula
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Figure 3.5: The left figure illustrates the algorithm that extracts a tmed from an LJF proof tree. The
right figure depicts the general architecture of a completed tmecd proof. The triangles represent mcds
and the dashed lines represents end of asynchronous phases.

or constant in the context of the sequent — the first rule introduces an hypothetical assumption, and
the latter two, a new eigenvariable — we could assume that all elements of a table are provable from
the bracketed context of the endsequent, and, therefore, insert a multicut derivation, constructed
from a table, already on the bottom of the tree. Now with the case of logic specifications composed
of hereditary Harrop formulas, the story is different. We cannot assume that all elements of a table
are provable from the endsequent’s context. This leads to the question: where to insert multicuts?
Since we want to avoid reproving, it is better to insert multicut derivations as early as possible, that
is, as early as the elements of a table are provable. So instead of extracting a table from a LJF proof,
we will now extract a tree of multicut derivations (tmed).

As its name suggests, a tmed is a tree whose nodes are multicut derivations and whose branches
connect, one open premise of a multicut derivation to the endsequent of a sub-tmcd. Formally, a tmcd
is specified as follows:

Definition 3.19 A tmecd, 7, is a finite set of one or more multicut derivations such that:
e there is a specially designated multicut derivation, M7, called the root of 7; and

e the remaining multicut derivations can be partitioned in N possibly empty disjoint sets, S;,
where N is the number of open premises in M+, and such that

e for all S; # (), the elements of S; can be further partitioned into m > 1 (ordered) subsets,
Ti,...,7Tm, and each of these sets is a tmcd.

Intuitively, the first partition of the set specifies the edges in the tmecd, connecting one of the
premises of the root multicut derivation and the endsequents of the tmeds specified by the (second)
partition of the subsets S;. The order of these subtrees specifies the branching order of the tree.

We now describe an algorithm to extract a tmed from an LJF proof, II, where all atoms are
assigned negative polarity. We first pre-process II by adding the empty polarity context to all of its
sequents and transforming it into an LIF®. proof, II’. For the algorithm, we only consider the sequents
in II’ of the form P;[I'] — [F]. We use the Figure 3.5 to illustrate how this algorithm works, where
the three different kinds of nodes (filled squares, ellipses, and blanked squares) denote sequents with
different bracketed contexts. (1) We extract the maximal subtree, Z, at the bottom of the tree with
the same bracketed context (in the example the subtree with filled squares) and construct from it the
multicut derivation Mg, by using a similar postorder traversal procedure described in the previous
subsection, just that, since sequents have a polarity context, P, representing tabled atoms, we do
not table these atoms again. Assume that (Ao, <) is the table of My. Then, (2) by traversing =,
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we determine the children subtrees, Z1,...=,, of = (in the example, the trees with blank squares
and ellipses), and at the same time, we determine which sequent of the form [I] — [F], where
F € Ay U{R}, is the closest to the endsequent of the each Z; and the order, from left to right, a
subtree appears, denoted by a natural number, j. At the end, we obtain tuples of the form (j, F;, Z;).
In the example, we associate the same formula to the subtrees with ellipses and blank squares, but
we associate to the former tree the order index 1 and to the latter subtree the order index 2. Now,
(3) for each tuple (j, F;,Z;), we determine the set P, = {A | A < F;}; (3.1) add this set to the
bracketed context and polarity context of all the sequents in Z;; and (3.2) replace all subderivations
in E; concluding a sequent of the form P;[I';] — [A], where A € P;, by the derivation composed of
the rules D, and I,., obtaining the derivation Z;. It is easy to check that =/ is still a valid LJF". proof.
Then, (4) we collect into a list all the subtrees =/ that have the same associated formula, F;, taking
into account the order of the associated order index. We obtain pairs of the form (F;,[Z},...,ZE7]).
We now apply the algorithm recursively over the elements of the list. The formula F; denotes the
open premise of the tmed’s root multicut derivation for which the tmeds obtained from =}, ... 7
are connected to.

Proposition 3.20 Let T be a finite set of D-formulas, let G be a G-formula, and let Z be an LJF cut-
free proof of [[|;T — G, where all atoms are assigned negative polarity. Let T be the tree of multicut
derivations obtained from = by using the algorithm described before. Then Y can be completed to a
proof by adding derivations containing at most one occurrence of D; rule.

Proof By induction on the height of the tree of multicut derivations.

Base Case: Suppose that the height of T is 0, that is, there is only one multicut derivation, M,
in T. We prove the base case by another induction on the height of M. The base case is trivial, since
it would mean that the multicut M contains only one cut, and this cut would have to use an atom
that is already present in the context of the proof. Therefore, it would require only one decide rule
to complete the derivation to a proof.

Now the inductive step: Consider that the sequent P; [I' UP] — A; is a premise of the multicut
derivation M. We can find a proof for this sequent with one decision left rule by proceeding as
follows: We check in = the formula F' that was focused on to prove A;. After this decision is made,
one performs decide right-rules and decomposes the G-formula on the right-hand-side. Because of
how the tables are constructed (A < B, then A is a subgoal of B), when these subgoals are completely
decomposed, it must be the case that it encounters a previously proved atom, that is, a positive atom,
and, therefore, another decision right finishes the proof with an initial right rule.

Inductive Step: We now have to show that there is a derivation between a branch sequent of a
multicut derivation and its direct descendant multicut derivations that contains at most one decision
left rule. This is similar to the base case. It suffices to decide in the same formula as in =, and
after performing a synchronous phase and later a possible asynchronous phase, there are two possible
outcomes: 1) the formula on the right-hand-side is not a positive atom and, hence, there must be a
descendant multicut for this goal; or 2) this formula is a positive atom, and, hence, a right decision
rule is enough to finish the proof for this branch of the multicut derivation. In both cases, there is
only one decision left rule. O

Notice that to find more efficiently the derivations that complete a tmecd, one also needs to agree
on the names of the eigenvariables generated in the asynchronous phase. One possible way to do so
is to consider the unbracketed context in the left-hand-side of sequents as lists, instead of multisets,
similarly as with the asynchronous-sequents in LLF. Then, one could enumerate the eigenvariable
according to the number of eigenvariables introduced in the path from where the variable is introduced
to the endsequent.
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3.8 A Proof Theoretic Notion for Fixed Points

The study of proof theoretic notions for fixed points dates back to Girard and Schroeder-Heister
in [Girard 1992, Schroeder-Heister 1993]. Their initial motivation was to provide a proof theoretic
explanation to negation-as-failure in the context of logic programming. We use the fixed point
operator (i, in a similar way as in [Baelde 2007b, Baelde 2008], to specify fixed points.

The fixed point operator y has type (t — 7) — 7, where 7 is a type of the form v, — v —
-y, — 0, each ~; is a type of a term, n is the arity of the fixed point and o is the type of formulas.
Its introduction rules are shown below:

I, B(uB)t — C I — B(uB)t
] ————= ]

= = - S S I
T, uBt — C T — uBt T, uBt —s uBt 1l

We refer to the term B, in a fixed point uBZ, as the fixed point’s body or definition. Its left and right
introduction rules, above, just unfold the definition of a fixed point, while the third inference rule is
the identity rule for fixed points.

Before we illustrate fixed points with some examples, we specify the proof theoretic ap-
proach to equality between terms, also due to Girard and Schroeder-Heister [Girard 1992,
Schroeder-Heister 1993]. We will often need equalities in the body of fixed points. The left and
right introduction rules of equality are as follows:

{0 — RO | 0 = mgu(s,t)} B
It=s—TR = F—>s=s[7r]

While the right introduction rule is clear: one can introduce a equality composed of the same terms;
the left introduction rule is more subtle. It contains a premise for each unifier 6 of the terms s and
t. Since we are dealing only with first-order logic terms, either this rule has only one premise if the
terms s and ¢ have a most general unifier, or it has no premise if s and ¢ are not unifiable. Also
notice that eigenvariables in the conclusion can also be substituted in its premise. We call the system
obtained by adding to LJ the rules above for fixed points and equalities as LJ*.

Now we can represent logic programs as fixed points. Consider for example the program described
in Section 3.2 that specifies when a node is reachable from another node. We represent this program
by the fixed point below, denoted by path:

w(ApathAz\y. © =y V 3z(adj © z A path z y))

The left disjunct corresponds to the clause in the program stating that a node is connected to itself,
and the right disjunct corresponds to the second clause of the program, with the recursion. The
adj z y predicate is also specified as a fixed point with definition V(a,b)e£ (x = a ATy =0b), where £
is the set of pairs with a graph’s edges.

Consider again the graph in Figure 3.1, it is easy to show that the fixed point path ag as is
provable. One just needs to unfold the fixed points on the right and chose the correct disjunct until
one finishes the proof by applying right introduction rules for equality and conjunction, as illustrates
the following derivation:

Ny, =, =
— (ap=ap Na1 = ay) A= =]

[n X V]

— (ap=apNar =a1)V(ap=a;Na; =az) V-
[ 4]

— adj ag a1 — path aq as

[Ar]

— adj ag ay A path aq as

[Vry3,]

— ag = a5 V Iz(adj ag z A path z as) ]
i

— path ag as
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This derivation also illustrates that the right introduction rule for unfolding, together with the right
introduction rule for equality, behaves closely to the backchaining rule in logic programming.

The main novelty of using fixed points and equalities lies on their left introduction rules. With
these rules, we can prove, for example, the formula —path a; as, which denotes that there is no path
from the node a; and as. The proof follows by first applying an implication right rule, and then
successive applications of the left introduction rules for fixed points, disjunctions and equality, as
illustrates the following derivation.

(ao=apNZ=a1)V(ag=a1 NZ=a3)V---,path Z a5 — L

ag=as — L [=i] adj ag Z,path Z a5 — L VERS 1]
ap = a5 V Iz(adj ap z A path z a5) — L b
path ag a5 — L BN [pu)
— —path ag as '~
By successive applications of the rules V;, A; and =;, the right branch reduces to several premises

where the eigenvariable Z is replaced by a node adjacent to a; and where one still needs to prove
that there is no path from Z to as. The proof finishes by checking all possible paths in the graph
that start from the node a;. Notice that, as the size of this proof depends on the graph, this proof
can be enormous. In practice, however, one uses tabling mechanisms to avoid proving twice the same
formula, deriving, hence, smaller proof objects that do not contain redundant subproofs.

In order to preserve consistency, we assume that the body of fixed points are monotonic, that
is, there are no negative recursive occurrences of the defined predicate. This is necessary for the
termination of the cut-elimination algorithm for LJ*. We do not show the cut-elimination theorem
here, but, instead, we point out some other references, including works that prove this theorem for
even more powerful logics, with induction and coinduction: McDowell & Miller in [McDowell 2000]
proposed a proof system that also allows induction over natural numbers and proved that the cut-
elimination theorem holds for this system. Tiu and Momigliano [Momigliano 2003, Tiu 2004] proposed
the system LINC that includes rules for induction and coinduction. They also proved that the
cut-elimination theorem holds for this logic. Later, Baelde and Miller [Baelde 2007b, Baelde 2008]
investigated the focusing behaviors of systems with fixed points. Based on these logics, several proof
assistants and tools have been proposed. Bedwyr [Baelde 2007a] is an implementation of a proof
search strategy for a fragment of first-order logic with fixed points [Tiu 2005], which uses the rules
above for introducing fixed points. We shall further explore this strategy in the next sections. Several
(interactive) theorem provers that use similar notions of fixed points have also been proposed, for
example, Abella [Gacek 2008] and Tac [Baelde 2008].

3.9 LJF#

We now exploit the non-canonical focusing treatment of fixed points investigated by Baelde & Miller
[Baelde 2007b, Baelde 2008]. They showed that there are complete focusing systems for linear logic
with fixed points, where fixed points can be frozen, that is, their definition can no longer be unfolded
and be treated as atoms. Thus, we can assign arbitrarily fixed points with negative or positive polarity.
In particular, positive fixed points, when focused on, are used in initial rules, provided that there is a
matching frozen fixed point in the context. In particular, we propose the intuitionistic system LJF*,
which allows fixed points to be assigned negative or positive polarity and is obtained by extending
LJF in two different ways: first, we add to its sequents two declarations, N and F, called the polarity
and the frozen contexts. We consider that if a fixed point, xBt, is an instance of an element in N,
denoted by the infix symbol &y, then it has negative polarity, otherwise it has positive polarity; and
if uBt €y F then pBt cannot be unfolded, but only be used in the initial rule. We classify these fixed
points as frozen. They will play a major role to further control the shape of proofs. Second, we add
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the rules for fixed points and equality shown in Figure 3.6. Initially, we assume that the polarity and
frozen declarations are both empty, and they only change when a table is incorporated into the proof
by using multicut rules (which will be introduced in the following sections).

As the path example above illustrates, by unfolding fixed points on the left, we can check if a
property is satisfied in all paths. In fact, Tiu et al. in [Tiu 2005] propose a proof search strategy for
proving G-formulas, specified in the grammar below, which consists on eagerly unfolding fixed points
on the left. This strategy was implemented as a tool called Bedwyr [Baelde 2007a].

Gu=t|L]|s=t|pApA\2.G)|GI AT Gy |GV Gy | PD G| 3G | V2G| A
Pu=t|L|s=t|pu(MpAL.P){| PLAt P, | PLVP|3zP| A

Notice that G-formulas appear always on the right-hand-side of the sequent, while P-formulas appear
on the left-hand-side of the sequent. Moreover, P formulas contain only synchronous connectives,
and, therefore, they are entirely decomposed in the asynchronous phase.

The proof strategy proposed by Tiu et al. is not complete because one never freezes a fixed point.
Hence, if a fixed point that specifies an infinite fixed point definition, such as the natural numbers, is
on the left-hand-side of the sequent, then one would unfold indefinitely many times. However, if we
only consider noetherian definitions, that is, fixed point definitions whose unfoldings terminate, such
as the graph example above, then we restore completeness. The proofs obtained through this proof
search strategy correspond to the LJF" proofs that do not contain instances of initial rules I/* and
I#. In this chapter, we assume that all fixed points are noetherian and only consider the proofs of
G-formulas above.

Proposition 3.21 All asynchronous rules permute over all other rules, except the following pairs of
rules:

(Vi/pr),  (Vifwa),  and (A /)

Proof Here we show some of the cases only:

o Vy/pu:
I, B(uB)t — P ] I, B(uB)t — P ]
I, uBt — P [”vl] F7B(uB)f—>PvQ[ ]
uBi—PvQ ' " - T Bl —pPvg
® Dy /s
nﬂwﬂepu HﬂwﬂﬂPBQ%CD]
rouBl—P Lo —c Lolo P 5 QBB —C )
Iy,T9, P> Q, uBf — C SR T.T9. P> QuBi—cC
.vr/ =
{T0 — PO | 6 = mgu(s,t)} rg — Po _
Fs—i P = 6 —povgs Ll [0=moulst)
r,s=t—>PvQ[vT] > [s=t—PVQ =]
‘\/r/ =1
{T0 — PO |0 = mgu(s,t)} re — Po B
T s—t—P [:l] o — PH\/QG [\/r] |9 = mgu(s,t)

Fs=t—pvq "l - A — VT =l
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O

The problem with the rules A, and V; is that, in principle, one cannot ensure that a fixed point is
unfolded in both premises. However, if this is the case, then the permutations work well, as illustrates
the following transformation:

I, B(uB)t — P | F,B(MB)F—>Q[ | I,B(uB)t — P T,B(uB)t — Q ]
ruBi—P T uBi—Q [A’f L@ —PrQ
T, uBf — PAQ "y ruBi—prrg

From the following proposition, proved by induction on the height of derivations, we can infer that
the polarity and frozen contexts do not change in a cut-free proof. In the next section, we investigate
how to manipulate these declarations by using multicut inference rules.

Proposition 3.22 Let = be an LJF* cut-free proof of N'; F;[] — G, where G is a G-formula and
N and F are declarations. Then all sequents in Z are of the form:

N;FIO S @ N;FOA—G N FET— (G orN;F;[T—q—

where I is a set of P-fixed points and atoms, A U{P} is a set of P-formulas, G' is a G-formula and
G" is a positive or a fizpoint G-formula.

The soundness and completeness theorem for LJF# follows next.

Definition 3.23 If C' is a G-formula or a P-formula, then C is the formula obtained by replacing all
occurrences of AT by A. If T is a set of G-formulas and P-formula, then I' = {C' | C € T'}.

Theorem 3.24 Let G be a G-formula and let N be an arbitrary polarity context. Assume all fized
points are noetherian. Then, the sequent — G is provable in LJ* if and only if the sequent
N;0;[] — G is provable in LJ*.

Proof Soundness is straightforward, as it suffices to remove all focusing annotations.

For completeness, we just need to show that when a LJ* sequent, — G, is provable in LJ*, then
the sequent that does not contain frozen fixed points N;0;[-] — G is provable in LIF¥. Given that
LJF is sound and complete with respect to LJ, we just need to consider the rules for the fixed points.
The only interesting case is with the unfolding rule uj', as its principal formula is not contracted, but
consumed in the premise. The proof is similar to the one in [McDowell 2003, Proposition 14]. We
extend Girard’s translation (see end of Section 2.4) with the translation of intuitionistic fixed points
to linear fixed points '—thi' = u!rP—'f and between equalities "s = t7 = s = t. It is easy to check
that this encoding is correct:

IFT TP (TP TCT
I,P(uP)i — C IFT7, p " P O
I, uPt — C ~ M PP e

As pointed out by Schellinx [Schellinx 1991], faithfulness is more involved because of introduction
rules that can close a premise whose right-hand-side has more than one formula, such as the left
introduction rules for 0 and =. Adding fixed points, however, does not affect Schellinx’s proof:
unfolding a fixed point on the right yields a formula whose main connective is a !. Either this formula
is erased by these introduction rules or the ! is introduced, which implies that the right-hand-side
contains only one formula.
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N;F; [T, uBt],0 — R N;F; 1,0 — [uBi]

- (071 =Rl
N;F;[I],0,uBt — R N;Fi[1],© — uBt
if [,LBFE@ N if ,uBt_’%g N
. [7¢]
N F; 0] == [uBt] N; F; [0, uBt) =, gy
if uBt ¢¢ F

N F; (1) —>B(“B:)t ] 1] N; Fi[T,0 —>B(uB)f[ .

N F; 0] 225 [R] NiFT,6 — pBl

N; F;[I],0, B(uB)t — R
N;F;[1],0,uBt — R

N F U= pupyi— .
Hr
N Fi U=, pi—

(7]

Equality Rules

{NO; F0;[10],00 — RO | 6 = mgu(s,t)} B -
N;F[[],0,t=s — R =] m[—r]

Figure 3.6: The rules in LJF* that introduce the fixed point operator, i, and equality.

Now given this translation, the key observation is that, when fixed points are noetherian and they
have P-formulas as body definitions, fixed points are left-permeable, that is, p!" P = !(u!"P7t).
This implies from cut-elimination that structural rules are admissible in the left-hand-side of the
sequent:

p!m P (T P I (u!"P) - C
L,pu!"PYiHC

[Cut]

The proof of u!"P7 F !(1!"P7%) relies on the fact that fixed points are noetherian and that a
fixed point appearing on the left-hand-side of the sequent has a completely positive formula. We
introduce eagerly the formulas in the left by applying asynchronous rules and unfolding fixed points
until we obtain premises of the form - !(x!” P7#), where 6 is the substitution derived from applying
=; rules. Now, to prove a particular premise, we just need to introduce the ! and simulate the path
used to reach this premise from the endsequent, by applying the duals of the rules used in the path
to reach this premise.

Finally, since unfolding of a fixed point can be done in either asynchronous or synchronous phase,
the polarity assignment does not affect provability. O

The following proposition justifies the completeness of the proof search strategy adopted by Tiu
et al. [Tiu 2005], which consists in not bracketing any fixed point, but always unfolding them.

Proposition 3.25 Let G be a G-formula, and assume that all fized points are noetherian. Then, for
any polarity context N, if the sequent N;0;[],- — G is provable in LJF*, then there is an LJF"
proof with no occurrences of []}'.

Proof We prove by induction on the number of [J}' in an LIF* proof Z of N;0;[],- — G. We
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perform the following transformation:

= Hy Zn
[Fu Npt_]7 A—G [HM] [Fel]a Agl B G91 T [FGHL Agn — Gen
[T],A,uPt— G ~ T, A, uPt — G

where the polarity and freezing declarations are elided. Instead of applying []}' to the fixed point uPt
we fully decompose it. This terminates because we are assuming that all fixed points are noetherian
and P-formulas are completely asynchronous on the left. =; is obtained from = by removing from the
bracketed context the formula pPt, applying the substitution 6;, replacing all occurrences of initial
rules involving wPt by the derivation where the right-hand-side is proved, similarly as done in the
proof of Theorem 3.24, and finally, adapting the =; rules adequately with the correct unifiers. O

It is worth noticing that, because one can bracket a fixed point and use it in a initial rule,
LJF* is more expressive than the logic behind Bedwyr. For example, one can prove the following
statement about natural numbers: Va(natx D nat(sz)), where nat is defined as the fixed point
p(AnatAz (z = 2) V 3z'(x = (s2’) AT natz’)). As one can unfold nat on the left indefinitely many
times, one must bracket the occurrence of nat on the left and use it in an initial rule in order to prove
this theorem.

3.10 A specific freezing discipline for tabling with fixed points

Proofs that contain fixed points can be enormous because they potentially contain redundant sub-
proofs. For example, consider once more the graph in the Figure 3.1. If one attempts to prove the
query —path a; as AT —path asz a2 in a logic interpreter, then it would prove the subgoal —path a3 as
twice. As discussed before, since proving this literal involves checking all the paths in the graph that
start with as, such proofs are as big as the graph itself. In implementations such as Bedwyr, one uses
tabling mechanisms not only for atoms, but also for literals, to improve proof search performance. We
will describe in the following subsection a freezing discipline for when fixed points and negated fixed
points are tabled, and in the subsequent subsection, we extend this discipline for when universally
quantified fixed points and negated fixed points are tabled.

3.10.1 Tables with fixed point literals

Instead of using polarity to denote membership of an atom in a table, we propose the following
connection between freezing and tabling: when a fixed point is frozen it denotes that it is decided if
this fixed point is positively or negatively proved. As before, we incorporate a table into a proof by
using multicut rules, more specifically the mc, rule below. Here, the polarity of fixed points is not
altered, but all of the instances of the introduced fixed points are frozen. We use the more general
term fized point literal for either a fixed point or its negation.

NiF [ — L oo N5FT — Le NiFUOLT, ALl — [A]
NG F 0] — (R

[mey

where for all i, L; is a fixed point literal, A;, = {Ly,...,L,}, and O, = {F | F € A or =F € A},
where F' is a fixed point.

Notice that, since P-formulas can be constructed with disjunctions, we cannot guarantee that the
proofs with interphase cuts are of the same size as the ones with intraphase cuts, as permuting cuts
upwards might increase proofs. However, in all the examples considered, the elements of the tables
are always provable from the context of the endsequent, which allows us to incorporate tables already
at the bottom of the tree.
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We consider that initially (at the endsequent) all fixed points are positive and not frozen, that is,
the polarity context N and F are both empty. The polarity context does not play a major role in
this subsection, but it will play a role in the next subsection, when we table universally quantified
fixed point literals.

Although the following soundness and completeness result is only for when tabling P-fixed point
formulas, we show, later in Section 3.12, some examples where one can also table G-fixed point
formulas.

Proposition 3.26 Let G be a G-formula and F be a set of P-fized point-formulas, such that, for all
wPt e F, there is a proof of - — uﬁf in LJ". Assume all fized points are noetherian. Then, for any
polarity context N, the sequent F — G is provable in LJ* if and only if the sequent N'; F; [F] — G
1s provable in LJF".

Proof Soundness is trivial, as it suffices to remove all focusing annotations.

From Proposition 3.25 and Theorem 3.24, we can assume that there is an LJF* proof for
N;0;[],F — G that does not contain instances of [|;'. We first remove all occurrences of un-
foldings on the left-hand-side appearing in this proof by induction on the number of pj' rules over
frozen fixed points. As we assume that fixed points are always unfolded, we can permute rules on the
left until a fixed point, xPt, is completely decomposed last:

—_

[T0,], AG,, — GO,
t

—
=1

[F@ﬂ, Agl I G91
[T], A, P(uP)

—

g

However since pPt is provable, it must be the case that at least one of the substitutions above, 6;,
is the identity substitution. Thus, we can replace the derivation above for the one that applies []f
over Pt and then complete the derivation with the proof obtained from Z;6; by adding uPt to the
bracketed context of all of its sequents. At the end, we will have an LJF* proof of N;0; [F] — G
that does not unfold any fixed point on the left. Now to remove the unfolding on the right, we just
permute u,- rules over asynchronous rules, so that all unfoldings on the right are done on sequents
of the form N;0;[F] — wPt, where uPt € F. We then replace the derivation concluding these
sequents by a derivation composed of []if and an initial rule. Finally, we replace in all sequents the
empty freezing context by F. O

There is also a soundness and completeness result for when we table not only fixed points, but
also negated fixed points. If —pPt is in the bracketed context, then one does not need to unfold an
occurrence of uPt on the left because, as the context is inconsistent, one just needs to rely on this
inconsistency (by focusing for example on —uPt). Moreover, if there is an unfolding of ;Pt on the
right, then it must be the case that both —wPf and pr are provable, which implies that the context
is again inconsistent.

By using the mc, rule above, we freeze in the right-most-branch the introduced fixed points,
which on the other hand are proved in the left branches. This enforces that the only existing proofs
for the right-most-premise are those that do not reprove finite failures or finite successes, denoted
respectively by negated fixed points and fixed points. We start by showing the case for finite successes
and then the case for finite failures.

Proposition 3.27 Let = be an arbitrary LJF" cut-free proof of the sequent N'; F; [['| — G, where
the fized point uPt € F N T has positive polarity, N C F, T is a set of fized points and G is a
G-formula. Then every occurrence of the sequents N3 F;[I'] — uPt or N;F; [['] =, pr— is the
conclusion of a derivation of decide depth of at most one.
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Proof We show the case for when the sequent is N;F;[[] — uPt. The other case follows
immediately from it. From Proposition 3.22 we can infer that it must be the case that I’ is a
set of fixed points. Now, we have to check all possible ways for which we can prove the sequent
N; F; [I'] — pPt. The first rule must be (%, since uPtis frozen. Then, one must prove the sequent
N; F;[I'] — [uPt]: if one focuses in the left, it must be the case that this fixed point has negative
polarity. However, it fails immediately since one cannot apply neither the rule pf because N C F
and, hence, the fixed point is frozen; nor the rule I/ since this fixed point is different from uPt
because the latter has positive polarity, while the former has negative polarity; nor can we apply the
Ry rule since the focused fixed point has negative polarity.

Now, the only remaining option is to focus on the right, which is possible since pPt has positive
polarity. Then, we cannot apply the rule u) because qu is frozen; nor can we apply the rule R,
because the fixed point is positive. The only remaining option is to apply I#. This succeeds because
Pt belongs to T, and, therefore, it must be the case that it also belongs to I'V. Hence, the only way
to conclude this sequent is with a derivation with decide depth of at most one. O

Returning to our path example, we can now table path fixed points so that the only existing
proofs are those that do not reprove the atom path, as illustrates the following derivation.

I
[path a3 aal—adj a1 as— [Path az a4)—path as as— {/\rj]
[path a3 as]—=adj a, asn+tpath as as™ [V, 3 ]r
[path a3 as]—as=a,v3z.adj ar sntpath = 0™
[[Jr, D]

[path a3 ay] — a3 = ay V Jz.adj a; z AT path z a4

a
[path a3 ay] — path a1 aq4 L]
Here the polarity and frozen declarations are elided. Consider that the fixed point path as a4 has
positive polarity and is frozen, while the fixed point path a, a4 has positive polarity but is not frozen.
Intuitively, the fixed point path as a4 is introduced by a multicut rule mc,. We do not show the
derivation introducing the sequent [path as a4]—adj a; az —, but one can easily check that it is a
completely synchronous derivation obtained by selecting the correct disjunctions.

Notice, however, that, since asynchronous phases can be enormous, the number of decide rules in
a derivation does not directly reflect the computational effort needed to find this derivation. In the
path example, one still needs to check all possible paths. But nevertheless, performing a bounded
proof search on the number of decide rules does reduce the amount of backtracking needed to search
for a proof, reducing the overall computational effort. Moreover, as we show next, one can avoid that
such asynchronous computations are performed twice by tabling negated fixed points.

Until now, there was no novelty, as we only dealt with the case when finite successes are tabled.
We now proceed to the case when finite failures can also be tabled. We again use instances of mc,,
cut rules to introduce negated fixed points, ~uBt, into the proof. In the left branches, these formulas
must be proved, while in the right-most-branch this formula is added to the bracketed context and
all instances of these fixed points are frozen.

Lemma 3.28 Let = be an arbitrary LJF" proof of the sequent N;0;[] — G, where G is a G-
formula, and let N'; F; [I] — [R] be a sequent in Z. Then for all formulas ~uPt € T', it must be the
case that uPt € F.

Proof From Proposition 3.22, we can infer that, in any proof of a G-formula, the only way to
introduce a negated fixed point to the bracketed context is by using an instance of the cut-rule mc,,.
Since once a fixed point is added to the frozen declaration it can no longer be removed, it must be
the case that this fixed point is frozen. O
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Proposition 3.29 Let = be an arbitrary LJF" cut-free proof of the sequent N'; F; [['| — G, where
the formula ~uPt € T and nPt € F has positive polarity, N' C F, T is a set of fired points literals, and
G is a G-formula. Then every occurrence of the sequent N'; F;[I'] — —uPt or N'; F; [T = pi— s
the conclusion of a derivation of decide depth of at most one.

Proof We proceed in a similar way as in Proposition 3.27, by checking all possible ways to conclude
the sequent \; F; [I'] — —uPt. The other case is similar.

The first rule must be D,., followed by [}, ], because Pt is frozen. Now, one has to focus on
the left. Since all negative fixed points on the left are frozen, they would not yield a proof, as we
already discussed in Proposition 3.27. Therefore, one must focus on a negated fixed point, —uPst,
apply the rule D;, resulting on premises of the form: N;F;[T] LR [L] and N3 F; ]~ p,7—- The
former premise is then the conclusion of a derivation composed of the rules R; and false;. The latter
premise can only be the conclusion of an initial rule, as, from Lemma 3.28, uPst must be frozen.
This means that both Pyt and pPst belong to I' U {uPt_}. Moreover, this derivation always exists
because we could always choose to focus on the left on =Pt since qubelongs toT'U {qu}, for any
I.o

We now are able to ensure, by using multicuts mc,, that the only proofs allowed are those for
which a finite failure is not reproved. Let us return to the path example described before. Consider
that we have introduced the negated literal —path a; as in the proof via a multicut. Then the proof
of =path ag as has to be of the following shape, where the polarity and frozen declarations are elided
and the fixed point path a; as is frozen and positive.

[-path a; ag, path a; as], L — L

7]

1
[-path a1 az, path a1 az|—path a1 ax— [-path a1 as, path a1 as] — L

[21]

—path a1 az

1

1071

[-path ay as,path a; as)

D
[-path ay ag,path a; as] — L D]

[-path ay a3, path a; ag — L

[-path a4 ag],adj ag Z,path Z ay — L

Vi, 3, A
[-path ay as], a0 = as V 3z.adj ag 2 AT path z az — | { i] L]
My

[>]

[-path a; as], path ag ag — L

[-path a; as] — —path ag az

Here the horizontal ellipses represent the left branch of the V; rule, which contains only an instance
of =;. The vertical ellipses represent the derivation obtained by unfolding and decomposing the fixed
point adj ag Z, where Z is an eigenvariable.

Once we have already proved a finite failure, A, whenever we encounter A as a subgoal in proof
search, we would like to fail quickly, that is, disallow proof search to continue, or if the context is
inconsistent, to finish the proof quickly. Because, whenever we introduce a finite failure with a cut
rule, we freeze the fixed point constructing the literal, we can also simulate this behavior.

Proposition 3.30 Let = be an arbitrary cut-free (open) derivation of the sequent N'; F;[I'] — G,
where the formula —~uPt € T, uPt € F has positive polarity, N C F, T is a set of fized points literals
and G is a G-formula. Then every occurrence of the sequent N; F; [I'] — uPt or N; F; ]~ pi—
is the conclusion of a derivation of decide depth of at most one.

Proof We again check all possible ways to conclude the sequent N; F; [IV] — ,uPi The other
case is similar.
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The first rule must be [];L , as the rule ¢ is not applicable because the fixed point wPt is frozen.
Now there are two options: focus on the right or on the left. If we focus on the right, then we can
only proceed by completing the proof with an initial rule if ,qu € I, since it has positive polarity
and is frozen. This would imply that the context is inconsistent, as —uPt is also in I'. If we decide
on a formula in the left, then it must be the case that we decide on a negated fixed point, —uBt,,
and not in a fixed point because A/ C F. One then applies the rule D;. The resulting left premise is
a sequent focused on a frozen positive fixed point which can only be the conclusion of a initial rule.
The right premise is the conclusion of the closed derivation composed of R; and false;. In all cases,
the derivation concluding the sequent N; F; [I'] — wPt has decide depth of at most one. O

Let us return to the third motivating example, described in Section 3.2, where an interpreter
attempts to prove the goal path as as, but now we assume that path is the fixed point described
in Section 3.8 and that the formula —path as as is tabled. If the interpreter attempts to prove the
subgoal path as as, then it will not be allowed to traverse through all paths from a3 to a4, but it will
fail immediately. This is illustrated by the following derivation where the polarity context, (), and the
frozen context, {path a3 a5}, are elided.

[_'path a3 a5]_adj as a3~ [_'path as a5}_path as a5 [/\Jr]

[Ve, 37
[+, Dr]
[147]

[_'path as a5]7adj as asAtpath as as™

[jpath as a5]_a2:a5v3z.adj ay zA+tpath z as™

[-path az a5] — as = a5 V Jz.adj ay z AT path z as

[-path a3 as] — path as as

The interpreter cannot proceed proving the open premise as no rules are applicable: it cannot unfold
path a3 a5 because it is frozen; nor can it release focus because path a3 as is positive; nor can it apply
the initial rule because path a3 as is not present in the context. Hence, the interpreter is forced to
backtrack and instantiate the existential variables with the correct witnesses.

The extraction of tables with fixed point literals from proofs is not much more elaborated than
the one described before for Horn clauses. Given an LJF* proof that does not contain [}, such as,
the proofs obtained from Tiu et al.’s strategy, we table negated fixed points with the same postorder
traversal algorithm, described in Subsection 3.7.1, but now we also include —A in the partial order
=<', whenever we encounter sequents of the form []; A — L.

3.10.2 Tables with universally quantified fixed point literals

Now, we go a step further and table not only fixed points literals, but also universally quantified fixed
point literals which denote that every instance is either a finite success or a finite failure. For this we
use the more general cut rule mcz, shown below.

N;Fl)— Ly - N;F[— L, NUV; FuOr;[IAL] — [R]
N;F; [T — [R]

[ch]

where for all ¢, L; is a fixed point literal or a universally quantified fixed point literal, A;, =
{Li,...,L,}, ¥y, = {F |VZF € Ap},and O, = {F | F € Ay or =F € A or VZ.F € Ay or
VZ.~F € Ap}, where F is a fixed point.

As before, when a fixed point is frozen, it denotes that it is decided if it is provable or it is not
provable. One can show that this freezing discipline is sound and complete in a similar way as done
in the previous subsection in Proposition 3.26: the argument is the same, just that we consider all
instances of a tabled fixed point as frozen.

The polarity of fixed points plays an important role to ensure that the only existing proofs are
those that always reprove a frozen fixed point with a bounded number of decide rules. This is done
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by assigning the polarity of fixed points in such a way that, when the tabled formula is focused on, it
is completely decomposed in the synchronous phase. Thus, when inserting into a proof a universally
quantified fixed point, we change the polarity of all instances of the corresponding fixed points, so
that when this formula is focused on the proof finishes immediately. Another consequence of such
focusing discipline is that we cannot perform forward-chaining steps and, therefore, we do not have
to restrict the reaction left rule R;, as we did in Subsection 3.6.3.

Lemma 3.31 Let E be an arbitrary LJF* proof of 0;0;[] — G, where G is a G-formula, and let
N; F;[I] — [R] be a sequent in =. If VZ.uBZ € T, then uBZ € NN F and if VE~uBZ € T, then
uBZ € F.

Proof The proof is similar to the proof of Lemma 3.28. O

Notice that, from the lemma above, we cannot always guarantee that all instances of the fixed
point constructing a universally quantified negated fixed point have positive polarity. It can happen
that, in a proof, the polarity of some instances are changed to negative by using an instance of the cut-
rule ch with a universally quantified fixed point, changing the focusing behavior of these instances
and, thus, changing the focusing behavior of universally quantified negated fixed points in the context.
However, if this is the case, it means that the table we used to construct the multicut derivation is
not consistent, as it contains formulas whose instance and of its negation are both provable. Here,
we assume that tables are consistent. In fact, we only need the weaker condition, stated below,
that sequents are polarized consistently, which implies that the tables used do not contain universally
quantified formulas of fixed point, A, and of a negated fixed point, - B, for which A and B are
unifiable.

Definition 3.32 A sequent N;F;[['] — G is polarized consistently if and only if for all formulas of
the form VZ.—~uBZ € T, all instances of pBa have positive polarity and for all formulas of the form
VZ.uBZ € T', all instances of pBZ have negative polarity.

Lemma 3.33 Let = be an LJF* cut free proof of a polarized consistently sequent N3 F;[I'] — G,
where G is a G-formula and T is a set of fized points literals and universally quantified fized point
literals. Then, every sequent in = is also polarized consistently.

Proof Simple proof by induction on the height of proofs. Since = is cut-free and only cut-rules
can modify the polarity and frozen contexts and insert universally quantified fixed point literals in
the context, it must be the case that all sequents in = are polarized consistently. O

As before, the only possible proofs are those where reproving a finite success and a finite failure
is bounded by derivations of decide-depth one.

Proposition 3.34 Let Z be an LJF" cut free proof of a polarized consistently sequent N'; F; [['] —
G, where G is a G-formula, VZ.uBZ € T, uBT e NNF, N C F and T is a set of fized points literals
and universally quantified fized point literals. Then every occurrence of the sequents N; F;[['] —
uBt or N, F; [F’]—MB;—> is the conclusion of a derivation of decide-depth of at most one.

Proof We again check all the derivations that can conclude the sequent A; F;[I'] — uBt. The
other case is similar.

The first rule is [/, as the rule ¢ is not applicable because pBZ € N'N F. Then we must decide
on a formula on the left, as all instances of 4 BZ are negative. One then can either focus on a negated
fixed point or a universally quantified fixed point literal. For the cases when we decide on a negated
fixed point or a universally quantified negated fixed points, the resulting synchronous derivation will
contain as premise a sequent focused on a frozen and positive fixed point on the right, which can only
be the conclusion of an initial rule, and a sequent focused on false on the left, which is the conclusion
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of a derivation composed of the rules R; and false;. Now the case for when we focus on a universally
quantified fixed point only succeeds if we focus on a formula that can be instantiated by applying 3
rules to pBt, such as, deciding on the formula VZ.uBZ € T’ because from Lemma 3.33 the sequent is
polarized consistently. In all cases, the derivation that concludes the sequent N; F; [[V] — uBt has
decide-depth of at most one. O

Proposition 3.35 Let Z be an LJF" cut free proof of a polarized consistently sequent N'; F; [['] —
G, where G is a G-formula, VZ.—~uBTZ € T, uBZ € F, N C F and T is a set of fized points literals and
universally quantified fized point literals. Then every occurrence of the sequents N'; F; [IV] — -uBt
or N3 F; [U)—_ gy or N; F; [I] — uBt or N, F; [I']—,pr— is the conclusion of a derivation of
decide-depth of at most one.

Proof The proof is a similar to the proofs of Propositions 3.29, 3.30, and 3.34. O

We now return to the problem of finding the elements of a table. In particular, we now describe
a method to determine how to universally quantify a fized point, uBZ. This method uses the logical
variables introduced by a logic interpreter like Prolog. Logic interpreters use logical variables to
postpone the decision of providing witnesses for the bounded variable in the 3, and V; rules. The
decision is made later by solving a unification problem, which yields a substitution for the logical
variables. Applying such substitution to the proof object returned by the interpreter yields a valid
proof in the logic. For example, if we use the logic program encoding the path example described
before and ask the query Jdz path x as, then the interpreter would replace the existential variable = by
a new logical variable X and return a substitution for it. In this case, there are three proof objects
where the X is replaced by ag, a1 or as, respectively.

Since interpreters find the most-general-unifiers, it might be the case that the substitution found
by the interpreter replaces a logical variable, X, with a term containing other logical variables X. In
these cases, the logical variables, X , behave like eigenvariables, that is, one can instantiate, in the
proof obtained by the interpreter, any variable in X by any term, and the resulting object is still a
valid proof. Hence, to determine how to universally quantify a fixed point, uBZ, we ask the query
JZuBZ to an interpreter, obtaining a substitution 6. Then, we can safely universally quantify over
the logical variables, X, appearing in (uBZ)6.

Notice however, that we cannot use the same method to determine how to universally quantify
negated fixed points, ~uBT, as these fixed points make use of equalities on the left. It is not yet
clear how to proceed when these equalities contain logical variables. Consider, for example, the query
Jz.(xr = 0 D L). The interpreter would have to find a substitution for x that does not satisfy the
unification problem z = 0, which is a problem of a different nature. Bedwyr, for example, does not
allow logical variables to appear in the left-hand-side of the sequent.

3.11 Table as proof object

We have illustrated how tables can be incorporated into proofs. To what extent can we think of tables
as proofs themselves? Of course, this question is best addressed when one knows what one will do
with a proof.

In the proof carrying code setting [Necula 1997], proof objects are transmitted together with mobile
codes to assure that some (safety) properties are satisfied by these programs. Before a client executes
the transmitted code the client checks that the proof that the code is carrying proves the program’s
safety. Thus, proof objects must be engineered so that they are not too large (in order to reduce
transmission costs) and not too complex to check (in order to reduce resource requirements on client
proof checkers).

Tables might well be a good format for proofs in this setting for several reasons. First, tables
represent, declarative information and not procedural information: in particular, tables only describe
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what is provable and do not go into detail about how things are proved. Proof checking can then
be organized around simple proof search engines that implement, for example, LIF’ . The trade-offs
between proof size and proof checking time are fairly clear: if the producer of a proof tables all
successfully proved atoms (as in Proposition 3.16), then tables can be large but proof checking can
be simple (only proofs of decide-depth 1 must be considered in extending a multicut derivation). On
the other hand, if some atomic formulas are not tabled, then the client may have to reprove them:
clearly, reproving some atomic formulas might be rather straightforward and something that a client
might be willing to do to help reduce the size of a transmitted proof.

In [Roychoudhury 2000], Roychoudhury et.al. propose using tables to build justifications that can
be seen as a kind of proof. In their setting, these proof objects serve to explain why a logic program
can or cannot prove a given atom. They argue that their justification can be used within model
checkers and parsers. It seems likely that our use of tables as proofs can be used in these settings as
well.

In the next section, we describe some tables that represent proof objects.

3.12 Examples

Example 3.36 We now return to the example of the Fibonacci sequence. Let the table, 7, contain
the Fibonacci sequence up to the N** Fibonacci number, denoted as fib(N, fib,), and the partial
order, =<, be such that fib(X,Y) < fib(X + 1,7) for all fib(X,Y) € 7. Moreover, let M be the
multicut derivation obtained from 7 and used to prove that fib(N,fib,). Then, M has a unique
proof that is linear in size. This contrasts with the previous cases obtained by changing the polarity
of fib atoms: either there are infinitely many proofs, where the smallest is linear in size, or there is a
unique proof, but it is exponential in size.

Example 3.37 Similarly to [McDowell 2003], we use the fixed point definition step below, that
specifies a transition from the state P to the state @) by performing the action A:

1(AstepAPAANQ.
dP' [P = AP Nt Q= APV
dP'Q'R.IP= (P |R)AT Q= (Q | R) AT step PP AQ'|V
JP'Q'RIP=(R|P)ANT Q= (R| Q") A" stepP" AQ'|V
dP'R.[P = (P'+ R) A\t (step P’ AQ V step R AQ)])

where A.P, P + @ and P | @ represent a process prefixed by an action A, the choice, and the
parallel composition, respectively. Although we only show a fragment of the concurrent language CCS
[Milner 1989], larger fragments could also be easily accommodated, as in [McDowell 2003]. Notice
that the fixed points step are completely positive, thus if focused on the right, these fixed points are
fully decomposed.

McDowell et.al. showed in [McDowell 2003] that the fixed point definition sim, defined below,

pu(AsimApAq. VAV P stepp AP’ O [3Q".stepq AQ' AT sim P’ Q'))

can be used to compute the simulation relation. In particular, a process P is simulated by a process
Q if and only if the atomic formula sim P @ is provable. (Bisimulation can be encoded using a
slightly more complex definition.) Moreover, if = is a cut-free proof of that atomic formula and if
S is the set of all pairs (¢,s) such that = contains a subproof of simts, then S is a simulation.
Furthermore, let < be the post-order relation on S derived from = as described in Section 3.7. Notice
that it is now a simple matter to check that S is, in fact, a simulation by treating it as a table
and considering extending its induced multicut derivation to a complete proof. In particular, let
(p,q) € S and let F = {simts | (t,s) € S, and simts < simpq}. An attempt to extend the sequent
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0; F;[F] — simpgq yields a proof of the form, where the polarity and freezing declarations are
elided:

Iy
[-,F]_stepqu.q/_> [:F]_Sl'mpl q' {/\_‘-]]
[f]_stepqaq/A+simp/ q']_> "
[D-, 3r]

[F] — 3Q’. stepqa Q’ At simp’ Q']

[F],stepp AP — [3Q’. stepq AQ' AT sim P’ Q') 2y 0]
X T 37'7 r
[F] — VA, P'. stepp AP’ D 3Q". stepqg AQ' AT sim P’ Q'

The vertical ellipses represent the asynchronous phase obtained by unfolding and decomposing the
fixed point stepp A P/, and the horizontal ellipses represent the other premises resulting from this
unfolding. At the end of this asynchronous phase, the eigenvariables A and P’ are replaced by the
action a and the state p’. Notice that there is only one D, rule in this proof and that if the fixed point
stepp A P’ is frozen, instead of unfolded, the goal is no longer provable because, for any instance of
@', one cannot prove the fixed point stepg A Q’.

Example 3.38 Consider a game between two players, named 1 and 2, who alternate in playing
(consider tic-tac-toe) and that one player wins when the other player cannot move. We assume that
the state of the game is encoded as a term in the logic and that the fixed point move P ) encodes the
fact that there is move from position P to @ (similar to the adj fixed point). Furthermore, assume
that there are no infinite plays. Then there is a winning strategy for player 1 from the position P if
and only if the fixed point win P, where win is the fixed point definition

p(AwinAP.YP" move P P’ > 3Q [move P’ Q AT win Q))

As with the previous example, let = be a proof of the fixed point winp, let W be the set of atoms
of the form win P that are proved in subproofs of =, and let < be the post-order traversal ordering
of W based on =. It is now a simple matter to verify that W encodes a winning strategy: simply
build the multicut derivation associated to the table W and extend it to a complete proof. This later
step is essentially the same kind of restricted proof search that is presented for the previous example
based on simulation.

Example 3.39 Consider a simple functional programming language, with abstractions, applications
and let constructors. We use the following fixed point definition, denoted by of, to typecheck programs
in this programming language:

PN OFAT AT AUAT.
[member (U,T) T',|V
[member (U, M) Ty AT of T, Ty M TV
E'R, Tl,TQ.[U = absR /\Jr T = arrT1 T2 /\+ VX.of ((X, Tl) o Fa) Fl (RX) Tg]\/
IM, N, T,.[U = app M N A+ of Ty Ty M (arr Ty T) A* of Ty Ty N TV
IM,N,T0.[U = (let M N)A+
VX.(0f Ty (X, M) : Ty X Ty AY of Ty (X, M) : Ty (N X) T)))

The fixpoint of I', I'; U T denotes that the term U has type T in the contexts I', and I';. Terms are
constructed by using the function symbols: abs of type (term — term) — term, denoting abstractions;
app of type term — term — term, denoting application of terms; and let of type term — (term —
term) — term, denoting let terms. Types are constructed by using the function symbol arr, denoting
function types. The context T, is a list of pairs, (X, T'), where the first element, X, is an eigenvariable
and the second element, T', is a term denoting the type of the variable X. Intuitively, these variables
denote the new variables in the context that are introduced when typechecking abstractions. Finally,
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the context I'; is also a list of pairs, (X, M), where X is an eigenvariable and M a term, which stores
the let binding variables together with the term they represent.

The first disjunct, in the definition of the fixed point of, checks if the pair (U,T") is a member of
the list I',, denoted by the fixed point member, which is specified by the usual fixed point used to
check membership in a list. The second disjunct checks if the pair (U, M) is in the context I';, which
means that we are typechecking a let binding variable associated to the term M. If this is the case,
then one checks if the type of M is T'. The third and fourth disjuncts correspond, respectively, to the
typechecking of an abstraction and of an application, where :: is the usual list constructor. Notice
that, for typechecking an abstraction, one must create a new eigenvariable X and insert it together
with its type into the I';, context. Finally, the fifth disjunct is used to typecheck let programs of the
form let M N. Notice that when this formula is focused on, then focus is lost and the asynchronous
phase starts by performing the rule V,., which creates a new eigenvariable for the let binder and adds
it together with the term M in the context I';. Then one checks if X has a type 77 and if the term
N X has type T.

Although one can use the fixed point of to typecheck the types of programs, its performance
is impractical as the cut-free proofs obtained from it might contain too many redundancies. In
fact, the great success of traditional typechecking algorithms, such as the one proposed by Milner
[Milner 1978], is that it avoids such redundancies by using polymorphic types containing type variables
that can be instantiated to any type. For example, consider the following program let Az.z N. Instead
of substituting all occurrences of the binder of N by the term Az.x, one finds the most general type
for Ax.z, which is Va.aw — «. Then, one continues by checking the type of N f, assuming that the
type of f is Va.aw — a. Whenever needed, one instantiates the type of f, by instantiating the type
variable a.

In our setting, polymorphic types are specified by formulas of the form:

va, Tl T.of (T, ::Ty) (T T) UT

denoting that the type of U is T for any instance of the type variables @ and any increments, I/, and

1, to the contexts I'; and I';. To enforce that these formulas are used and not reproved, we use the
multicut rule mcz to introduce them into the proof before we check the type of the terms, M and
N, in a let term. Consider, for example, the proof of the sequent @;@; -] — of T', T'; (letmmn)t. One
unfolds the fixed point, then focuses on the right-hand-side, selects the last disjunct, by successive
applications of V,. rule, instantiates the existential variables and decomposes the positive conjunction.
We obtain two premises: one focused on the equality let mn = let mn, which ends with =,., and the
other premise is the conclusion of the the following derivation, where the polarity and frozen contexts
are both empty and are elided:

[] — [of T (X,m) =Ty X t1 AT of Ty (X,m) :: Ty (n X) t)]
[] — VX.(of Tp (X,m) =T X t1 AT of Ty (X,m) :: Ty (n X) t)

[] TVX.(of Ty (X,m)::Ty X tiAtof Ty (X,m):ly (n X)t)

[¥r, ]
[R:]

At this point, we use the multicut rule mcx to introduce into the proof the formula F =

va, I, T.of (T, 2 Ty) (T =2 (X,m) =2 Iy) XT,, denoting the polymorphic type for the term m.
As discussed at the end of Subsection 3.10.2, we can use a logic programming interpreter to deter-
mine which are the universally quantified variables in F'. We can use the same proof obtained from
this interpreter to prove the left-premise of the cut. Now the right-premise of the cut rule must be

n fact, in order to obtain the correct answer set substitution, one needs an extra term, say var, to denote both
let and abstraction variables. More specifically, one needs to replace, in the third and fifth disjuncts, all occurrences of
universally quantified variables, X, by var X, and in the first two disjuncts, one must also check that the term being
typechecked is a variable, var U.
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the conclusion of the following derivation, where the polarity and frozen contexts contain only the
formula of (I, :: T'y) (I} :: (X, m) =: T'y) X T,

= [3 X Vl, Ilﬂ]
[F] £ [of T, T X 4]
[F] — [of To I¥ X 1] DI =
[ (R, (1] =

Fl—ofr,r7 X t,— [Fl=of 1, T2 (n X))~

N
[Fl=of 1y T# X tyA+of To TF (n X) £)] In]

[F] — [of T TF X t1 AT of T, TF (n X) t)]

[Dr]

where I'7 = (X, m) :: T';. Notice that in % one has to release focus because all instances of the fixed
point of (I, :: T'p) (I} + (X, m) :: I'}) X T, are negative. Moreover, in = all attempts to check the
type of X will be the conclusion of a similar derivation as the derivation above of the left-premise.

3.13 Conclusions and future works

In this chapter, we investigated how to give a declarative answer to the question of reusing and not
reproving previously proved lemmas. We proposed two focusing disciplines for tabled formulas which
ensured that the only existing proofs are those that reuse tabled formulas. The first focusing discipline
consisted in assigning positive polarity to tabled atoms. It was then applied in some fragments of
first-order-logic, namely when logic specifications are hereditary Harrop formulas and when tables
contained only atomic formulas. The second focusing discipline consisted in freezing fixed points that
are tabled. It was applied to small fragments of first-order-logic, where all fixed points are noetherian
and when tables contained only fixed point literals and universally quantified fixed point literals.
Finally, we illustrated their use with some examples, such as simulation of two processes, winning
strategies and let polymorphism typechecking.
We now point out some future work directions:

e Tabling more than universally quantified fized points — One could imagine tabling formulas that
have implications, such as formula of the form VZ[(uB1Z AT ... AT uB, %) D uBZ]. In this case,
if we consider the focusing discipline where all/some instances of the formula uBZ are frozen
and with negative polarity, then one could ensure that the lemma above is used whenever there

is an instance of uBZ on the right-hand-side of the sequent, obtaining derivations of the form:

[F]_uBlﬁ e [P]_uBnt_‘_)

] — [uBi]

The challenge is to find the conditions for which such focusing discipline is complete and how
to find or extract such tabled formulas.

e Tables as proof objects — Here, we have just speculated that one could use tables as proof objects
in the proof carrying code framework. One still has to understand the trade-offs between the
amount of information in the table and the “work” necessary for completing a table to a proof.
This is also connected to the process of cut-introduction that consists in introducing cuts into
a (cut-free) proof to obtain smaller proofs.

e Not only noetherian fized points — Here, we have always assumed that all fixed points are
noetherian. It seems possible to generalize some of the results obtained here to the more
general setting. The first task is to prove the completeness of systems that consume fixed
points whenever they are unfolded in the asynchronous phase. For this one has to show that
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by only contracting positive formulas the contraction of fixed points is admissible. One could
try, for example, to encode LJ* in linear logic in similar way as in [Liang 2008].

Tabling such fixed points is also related to avoiding cyclic proofs, which is another important
use of tabling systems. For example, consider that we have a graph that contains cycles. If
we attempt to prove that a node a is not connected to another node b, then it might happen
that, while searching for a proof, the interpreter encounters a cycle in the graph. This would
generate a cycle in proof search. Systems like Bedwyr [Baelde 2007a] use tabling mechanisms
to find such cycles, and depending if the cycle is with a greatest or a least fixed point the proof
search fails or succeeds.






CHAPTER 4

A framework for proof systems

Meta-logics and type systems based on intuitionistic logic are commonly used for specifying natural
deduction proof systems. We shall show here that linear logic can be used as a meta-logic to specify
a range of object-level proof systems. In particular, we show that by providing different polarizations
within a focused proof system for linear logic, one can account for natural deduction (normal and non-
normal), sequent proofs (with and without cut), and tableaux proofs. Armed with just a few, simple
variations to the linear logic encodings, more proof systems can be accommodated, including proof
systems using generalized elimination and generalized introduction rules. In general, most of these
proof systems are developed for both classical and intuitionistic logics. By using simple results about
linear logic, we can also give simple and modular proofs of the soundness and relative completeness
of all the proof systems we consider.

References: parts of this chapter appeared in the conference paper [Nigam 2008b] and appeared
in the extended and improved version of this paper [Nigam 2009b].

4.1 Introduction

Logics and type systems have been exploited in recent years as frameworks for the specification of
deduction in a number of logics. The most common such meta-logics and logical frameworks have
been based on intuitionistic logic (see, for example, [Felty 1988, Paulson 1989]) or dependent types
(see [Harper 1993, Pfenning 1989]). Such intuitionistic logics can be used to directly encode natural
deduction style proof systems.

In a series of papers [Miller 1996, Pimentel 2001, Miller 2002, Miller 2004, Pimentel 2005], Miller
& Pimentel used classical linear logic as a meta-logic to specify and reason about a variety of sequent
calculus proof systems. Since the encodings of such logical systems are natural and direct, the meta-
theory of linear logic can be used to draw conclusions about the object-level proof systems. For
example, in [Miller 2002], a decision procedure was presented for determining if one encoded proof
system is derivable from another. In the same paper, necessary conditions were presented (together
with a decision procedure) for assuring that an encoded proof system satisfies cut-elimination. This
last result used linear logic’s dualities to formalize the fact that if the left and right introduction rules
are suitable duals of each other then non-atomic cuts can be eliminated.

In this chapter, we again use linear logic as a meta-logic but make critical use of the completeness
of focused proofs for linear logic. In particular, we exploit the fact that literals can be assigned
with arbitrary polarity and that different polarity assignments may yield different linear logic proofs.
The earlier works of Miller & Pimentel assumed that all atoms were given negative polarity: this
assignment resulted in an encoding of object-level sequent calculus. As we shall show here, if we
vary that polarity assignment, we can get other object-level proof systems represented. Thus, while
provability is not affected, different meta-level focused proofs are built and these encode different
object-level proof systems.

Our main contribution in this chapter is illustrating how a range of proof systems can be seen
as different focusing disciplines on the same or (meta-logically) equivalent sets of linear logic spec-
ifications. Soundness and relative completeness of the encoded proof systems are generally derived
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via simple arguments about the structure of linear logic proofs. In particular, we present exam-
ples based on sequent calculus and natural deduction [Gentzen 1969], Generalized Elimination Rules
[von Plato 2001], Free Deduction [Parigot 1992], the tableaux system KE [D’Agostino 1994|, and
Smullyan’s Analytic Cut [Smullyan 1968a]. The adequacy of a given specification of inference rules
requires first assigning polarity to meta-level literals used in the specification: then adequacy is
generally an immediate consequence of the focusing theorem of linear logic.

Comparing two proof systems can be done at three different levels of “adequacy”: relative complete-
ness claims simply that the provable sets of formulas are the same, full completeness of proofs claims
that the completed proofs are in one-to-one correspondence, and full completeness of derivations
claims that (open) derivations (such as inference rules themselves) are also in one-to-one correspon-
dence. All the proof systems that we shall encode will be done with this third, most refined level of
adequacy.

This chapter is structured as follows: in Section 4.2, we describe how object-level formulas and
sequents are encoded in linear logic, and we introduce the three levels of adequacy for encodings
mentioned above. In Section 4.3 we show how to encode sequent calculus systems for minimal,
intuitionistic and classical logic. Then, in Sections 4.4 and 4.5, we encode natural deduction systems
for minimal and intuitionistic logics, with and without generalized elimination rules. Section 4.6
shows the encoding of Parigot’s Free Deduction system [Parigot 1992] for classical logic. In Sections
4.7 and 4.8, we encode the tableaux systems for propositional classical logic proposed by D’agostino
et al. [D’Agostino 1994] and Smullyan [Smullyan 1968a]. Finally in Sections 4.9 and 4.10, we end this
chapter by commenting some related works and pointing out some future work directions.

4.2 Preliminaries

4.2.1 Encoding object-logic formulas and proof contexts

The proof systems that we encode have (partial) proofs that involve formulas in two sense. For
example, in the process of building a natural deduction proof, some formulas are hypothesis (one
argues from such formulas) and some formulas are conclusions (one argues to such formulas). In the
process of building a sequent calculus proofs, some formulas are on the left of the sequent arrow and
some are on the right. Tableaux proofs similarly use signed formulas (with either a T or F sign
[Smullyan 1968b]) or places formulas on the left or right of a turnstile [D’Agostino 1994].

Informally, we will think of a proof context as being a collection of object-level formulas that are
each present in these two senses. Thus, when encoding natural deduction, this collection can be a
set or a multiset of object-level formulas marked as either being an hypothesis or the conclusion. In
order to provide a consistent presentation of proof contexts throughout the range of proof systems, we
introduce the two meta-level predicates |-]| and [-] of type form — o: the meta-level atomic formulas
|B| and [B] are then used to denote these two different senses of how the object-level formula B
is used within a proof context. The meta-level focused sequent - © : T {} - can then be used to
collect together atomic formulas into a set via the unbounded context © or into a multiset via the
bounded context I'. Thus, the object-level sequent By,...,B, F Ci,...,C,, can be encoded as the
LLF sequent - -: | B1],...,|Bn],[C1],...,[Cm] 1 - if both the left and right side of the object-level
sequent are multisets. If, say, the left side is a set and the right side is a multiset, then this sequent
could be represented as + |Bi],...,|Bn] : [Ci],...,[Cmn] ft . Here, formulas on the left of the
object-level sequent are marked using |-] and formulas on the right of the object-level sequent are
marked using [-]. For convenience, if T is a (multi)set of formulas, |I'| (resp. [I']) denotes the
multiset of atoms {|F'| | F' € T'} (resp. {[F| | F € T'}).

The theory £ given in Figure 4.1 will be used throughout this chapter in order to axiomatize
the two senses for all the connectives in both intuitionistic and classical logic. For example, the
conjunction connective appears in two formulas: once in the scope of |-| and once in the scope of
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(=1) |A=B|*te([A]®|B)) (=r) [A= Bl*®(|A]®[B])
(ML) [AABJ*©(lA]@|B)) (Ar) [AABI*t @ ([A]&[B])
(Vi) [AVB]*®(lA] & [B)) (Vr) [AVB]*t®([Ale[B])
(Vr) |VB|* ® |Bz| (Yr) [VB]* ® Vo[Bz]

(3.) |3B|* ® Vz|Bx| (3r) [3B]* @ [Bx]

(Lr) [L]* (tr) [t1+eT

Figure 4.1: The theory £ used to encode various proof systems for minimal, intuitionistic, and classical
logics.

(Id,) |B]*®[B]* (Idz) |B]®[B] (Idy) |B|®![B]
(Strz) |B|* ®?|B] (Strr) [B]*+ ®?[B] (Wgr) [C1t@ L

Figure 4.2: Specification of the identity rules (cut and initial) and of the structural rules (weakening
and contraction).

[-]. Notice that this axiomatization is independent of the proof systems that this theory is used to
describe. When we display formulas in this manner, we intend that the named formula is actually
the result of applying ? to the existential closure of the formula. Thus, the formula named (Ap) is
actually 73JA3B[|AA B]* ® (|A] @ | B])]. Furthermore, for intuitionistic and minimal logics, we use,
instead, the two following formulas for the meaning of the implication:

o) ADBIte([Al®|B])  (Or) [AD BT @(lA]®[B])

The bang in the formula (D) will be important to correctly encode the structural restriction for
these logics, where sequents contain at most one formula in their right-hand-side. We denote by L
the set obtained from £ by replacing the formulas (=) and (=g) by (D) and (Dg), and we denote
by Ls the set obtained by removing the formula (L) from L.

The formulas in Figure 4.2 also play a central role in presenting proof systems. The Id; and Id,
formulas can prove the duality of the |-| and [-] predicates: in particular, one can prove in linear
logic that

FVB([B] = |B|*) &VB(|B| = [B]"), Idy, Id,

These two formulas are used, for example, to encode the initial and cut rules when we shall encode
object-level sequent calculi (Section 4.3). To correctly encode the structural restrictions of intuition-
istic and minimal logics, however, we use the clause Id,, instead of Idy. Notice that one can no longer
prove the equalities above from the formulas Id; and Idj, and hence the dualities between |-| and [-]
formulas do not hold in minimal and intuitionistic logics.

The formulas Str;, and Strg allow us to prove the equivalences |B| = ?|B| and [B] = ?[B]. The
last two equivalences allow the weakening and contraction of formulas at both the meta-level and
object-level. For instance, in the encoding of minimal logics, where structural rules are only allowed
in the left-hand-side, one should include only the Str; formula; while in the encoding of classical
logics, where structural rules are allowed in both sides of a sequent, one should include both Str; and
Strg formulas. The formula Wx encodes the weakening right rule and is used to encode intuitionistic
logics, where weakening, but not contraction, is allowed on formulas on the right-hand-side of a
sequent.

From the Stry clause we can derive the equivalence |B|* = !|B]* by negating the equivalence
|B| = ?|B] obtained from this clause. This equivalence allows us to insert the ! before negative
occurrences of |-|. The presence of bangs in theories will play an important role in encoding correctly
the structural rules of logics, such as minimal and intuitionistic logics, which require that right-hand-
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sides of sequents do not contain more than one formula. Although these equivalences do not affect
provability, applying them can change focusing behavior significantly.

4.2.2 Adequacy levels for encodings

When comparing deductive systems, one can easily identify several “levels of adequacy.” For example,
Girard in [Girard 2006, Chapter 7| proposes three levels of adequacy based on semantical notions:
the level of truth (level -1), the level of functions (level -2), and the level of actions (level -3). Here,
we also identify three levels of adequacy but from a proof-theoretical point-of-view. The weakest
level of adequacy is relative completeness (level -1) which considers only provability: a formula has
a proof in one system if it has a proof in another system. A stronger level of adequacy is of full
completeness of proofs (level -2): the proofs of a given formula are in one-to-one correspondence with
proofs in another system. We can consider an even stronger level of adequacy. We use the term full
completeness of derivations (level -3) if the derivations (such as inference rules themselves) in one
system are in one-to-one correspondence with those in another system.

For each of the object-logic proof systems that we consider here, we propose a meta-level theory,
say L', that can be used to encode that system at the strongest level of adequacy. In all cases, we
obtain £’ from the formulas in Figures 4.1 and 4.2 by some combination of the following steps.

1) Applying equivalences. As we have shown, some equivalences are derivable from the identity
and structural rules. Hence, we will at times replace occurrences of, for example, | F|+ with [F].

2) Incorporating structural rules into introduction rules. Although the formulas Stry and
Strr provide an elegant specification of the weakening and contraction structural rules for the two
difference senses for object-level formulas, they do not provide a good focusing behavior since the
equivalences they imply can yield loops in a specification. Therefore, we incorporate the structural
rules into a theory by adding ? and ! in its formulas. This transformation to a theory is usually
formally justified using an induction of the height of proofs.

3) Switching between multiplicative and additive introduction rules. Given the presence
of 7 and ! within the specification of inference rules and the linear logic equivalences 7(A® B) = 7A %
?B and (A& B) =! A®! B it is possible to replace, for example, the “additive” version of the rules
(AL), (AR),(VL), (VR) in £ with their “multiplicative” version, namely with

Formal justification of this step will also be done using an induction on the height of proofs.

When we build £’ from £ and the rules in Figure 4.2 based on these steps, it will be a simple matter
to prove that the new theory £’ proves exactly the same formulas as the original theory. However,
before we can formally say that a theory £’ describes a proof system, we must assign polarity to
the meta-level atomic formulas |-] and [-]. Only then can we claim that the “macro-rules” that
result from focusing on formulas in that theory match exactly the inference rules of the corresponding
encoded object-logic proof system. This polarity assignment may differ between different proof system
encodings.

Although we concentrate on obtaining encodings of proof systems at the highest levels of adequacy,
it is worth noticing that one might still be interested in theories that are adequate only at the level of
(complete) proofs. For example, following the Curry-Howard isomorphism, functional programs are
complete proofs and their execution involves the construction of cut-free proofs out of these programs.
In that domain, one may not require adequacy at the level of (open) derivations.
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rLADBrA TADBBFC rA-B
T,A>BFC B srasp PA
T A ANAs,A;-C . . TFA TFB
T A Ady o M rranrpg M
IAVBAFC T AVBBFC | T4 oo
IAVBFA VL] F%A1VA2[ i
Wz A, A{t/z} - C ' A{c/z}
I'VxAERC VL] I'Evax A [VE]
I3z A, A{c/z} F C ' A{t/x}
T3z AFC B Traza F
T''AFC TFA
: [Cut] — [tR]

TFC RAI—A[I] TFt

Figure 4.3: The sequent calculus, LM®, for minimal logic. Here, ¢ is not free in 'U{C} and ¢ € {1, 2}.

o IE-
rir H e VR

Figure 4.4: The rules to add to LM€ to obtain the sequent calculus, LJ¢, for intuitionistic logic.

A= BFAA T,A=B,BFA I AFA= B, BA

TA=BrA =4 Trraspa BA
S ) RS
AV BJ;[_AA\/ BF;—AAV B BFA VL] FI‘}_:‘LX\;\I/LIZ;?%A’A [VR;]

A ) TS
LA A/} o TEIrA A A

T,z AF A TFdrAd A

IAFA THAA
TFA

Cul v araa U rrea Al ora A

Figure 4.5: The sequent calculus, LK®, for classical logic. Here, ¢ is not free in 'U{C'} and i € {1, 2}.
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(o) [AD>BlF@(fAle?(B])  (Or) fADBW ® (7[A] ® [B])
(AL) |AABJ*@(?[A]@?|B])  (Ar) [AAB]*@([A]&[B])
(Vo) [AVB]*t® (74| &?[B)) (Vr) [AV Bt @ ([A]@[B])
(Vr) |VB|* ®?|Bx| (Vg) [VB]* ® Va[Bx]
(3r) |3B]* @ Va?|Bx| (3r) [3B1* @ [Bz]

(tr) [t]*eT
(Id,) |BJ*®[B]* (Idy) ?|B]®![B]

Figure 4.6: The theory Ly, encodes the sequent calculus proof system LM¢€.
(Le) [L]m (Wa) [CTreL

Figure 4.7: Adding these two clauses to L, yields £j;, which is used to encode the sequent calculus
proof system LJC.

(=L) (A= BJ ® (?[A]l ®7|B]) (=r) [A= Bt ®(?|A]®?[B])
(AL) [AABJF @ (?[A] @7 |B]) (Ar) [AAB]* @ (?[A] &?[B])
(Ve) [AV Bt (?|A] &?|B]) (Vr) [AV Bt @ (?[A]@?[B])
(V) |VB|* ®?|Bz| (Vr) [VB]* ®@Vz?[Bz]

(3L) |3B|* @ Va?| Bzx| (3r) [3B]* ®?[Bx]

(Lr) [L)* (tr) [t]+

(Id) [BJ*®[B]* (Id2) ?|B|®7?[B]

Figure 4.8: The theory Lj; encodes the sequent calculus proof system LK€.

4.3 Sequent Calculus

Figures 4.3, 4.4, and 4.5, respectively, contain three sequent calculi for minimal (LM¢), intuitionistic
(LJ®), and classical logic (LK), where contractions are implicit in the logical rules. A linear logic
encoding for these systems is given by the theories, Lj,, £} and Ly shown in Figures 4.6, 4.7 and
4.8. These sets differ in the presence or absence of 7 in front of [-], in the presence or absence of
the formula (L) and in the formula encoding the left introduction for implication. In particular,
in the LM€ encoding, no structural rule is allowed for right-hand-side formulas; in the LJ¢ encoding,
the right-hand-side formulas can be weakened; and in the LK® encoding, contraction is also allowed
(using the exponential 7). The formula (L) only appears in the encodings of LJ and LK€. In the
theories for LM® and LJ¢, the formulas encoding the left introduction rule for implication and the
formula Id, contain a ! before a positive occurrence of [-] atom. As we shall see, these occurrences of !
are necessary for preserving the invariant that in minimal and intuitionistic logics the right-hand-side
of sequents do not contain more than one formula.

A key ingredient in capturing object-level sequent calculus inferences in a focused linear meta-logic
is the assignment of negative polarity to all meta-level atomic formulas. To illustrate why focusing is
relevant, consider the encoding of the left introduction rule for D: selecting this rule at the object-level
corresponds to focusing on the formula F' = 3A3B[|A D B+ @ (/[A] ® | B])] (which is a member of
Lim). The focused derivation in Figure 4.9 is then forced once F is selected for the focus: for example,
the left-hand-side subproof must be an application of initial — nothing else will work with the focusing
discipline. Notice that this meta-level derivation directly encodes the usual left introduction rule for
D: the object-level sequents 'y A D BB+ C and I'y A D B+ A yields I'; A D B+ C. Moreover, the
I'enforces that in all branches there is at most one [-] atom.

If we fix the polarity of all meta-level atoms to be negative, then focused proofs using L, £, and
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KA A FK Bl [CT
iy ) M reris Y
K [AD Bt FK:[C] VA ®?[B]
KO F [23.¢]
Trqory. P

Figure 4.9: Here, the formula A D B € T" and K denotes the set Ly, [T'].

Ly yield encodings of the object-level proofs in LM, LJ°, and LK®. We use the judgments Fjp, Fyj,
and Fjx to denote provability in LM¢ LJ¢, and LK€.

Proposition 4.1 Let TUAU{C} be a set of object-level formulas. Assume that all meta-level atomnic
formulas are given a negative polarity. Then

].) T |_1m C Zﬁ l_llf »Clma LPJ : I_CW ﬂ
2) Iy Caff bue Ly, [T 2 [CT A
3) Tk Aiff bor L, I_FJa ’—A‘| o

Furthermore, adequacy for derivations also holds between the respective proof systems.

Proof First, one shows that focusing (deciding) on formulas within the linear logic theories L,
Ly, and Ly encodes exactly the corresponding sequent calculus inference rule. In all cases, this
correspondence is shown with steps similar to the one offered above for the left-introduction of ©. Once
this level of adequacy for the encoding is established, the other results concerning the equivalences of
provability follow immediately. See also [Miller 2002, Pimentel 2001] for similar proofs related to the
encoding of sequent calculus proofs. O

If one removes the formula Idy and Id, from the sets L, Ljj, and Ly, obtaining the sets E}cm, cf

1j
and L!, respectively, one can restrict the encoded proofs to cut free (object-level) proofs, represented
by the judgments I—ﬁn for minimal logic, I—Ifj for intuitionistic logic, and l—{; for classical logic. The
following proposition is an immediate consequence of the proof of Proposition 4.1.

Proposition 4.2 Let ' UA U{C} be a set of object-level formulas. Then

1) T Cff bue L5, [T [CT 4 2) THECiff by £, 7)< [C] 1

Im>

3) THL A iff Fue £, [T], [A]
Furthermore, adequacy for derivations also holds between the respective proof systems.

Now that we have succeeded to find linear logic theories that encode the sequent calculus inference
rules for minimal, intuitionistic, and classical logics at our strongest level of adequacy, we turn to
showing how these theories are related back to the more elementary and modular sets of formulas
shown in Figures 4.1 and 4.2. The equivalences that appear in the following three propositions are
all at the most shallow level of adequacy: the equivalence of provability.

Proposition 4.3 Let I and A be sets of object logic formulas. Then
Fu L, Idy, Idy, Stry,, Strg, ?I_FJ, ?|—A—| iff Fn Lk, ?LFJ R 7[A—| .

Proof From the structural rules, Stry, and Strg, we know that |C'| = ?|C] and [C'] = ?[C]. Since
the only difference between Ly, and LU {Idy, Ids} is that the former has ? before positive occurrences
of || and [-], it is the case that Ly is a consequence of £ U {Id, Ids, Stry,, Strg}, proving the <
direction.
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For the = direction, we need to show that the structural rules are admissible. We use focusing
to help. In particular, we show that if by £, Idy, Ids, Stry,, Strg, Fy : Fo 4} then Fye Ly, F1, Fo i - 11,
where F; and F, are multisets of meta-level atoms (of which all are given a negative polarity). This is
proved by induction on the height of focused proofs (the proof follows the same lines as in [Miller 2004,
Proposition 4.2]). We show the inductive case for (=1 ): all the others cases are done similarly. Thus,
assume that our proof ends with a decide rule that selects an instance of the (=) formula from
Figure 4.1. Thus, the proof ends with the following derivation, where K = L, Idy, Idsy, Stry, Strg, F1
and F = F5 U F3 (here, F; and F» are multisets of atomic formulas).

D) FE:F (AT (RU. R FK:75, 1Bl (R, R
FK:-||A= BJ* K F[A] ’ FK:F3|B] [2><7®]
FK: | |A= Bt ®([Al® |B)]) D22
F’CSfQﬂ ’

Thus, |A = B| € F1, and by the induction hypothesis, we have proofs of the sequents F Ly, F; :
F3,[A] 1 and + Ly, Fy : F2, | B| f. By Proposition 2.7, the sequents - K, [A] : - f and - K', | B] :
-t are also provable, where K' = Ly, F1, F2. Thus, the desired proof using the theory Ly but with
focusing on the (=) formula in Ly is

FKLTAT - f EK[B] -
FK':- ) [A= B]* 2| K 7[A] 124,71 K- ?|B]
FK': | |A= Bt ®(?7[A]®?|B))

FK o

[RY,7]
[2 x ®]

[D2,2 X E']

The = direction is a direct consequence of this intermediate result and the focusing theorem. O

Proposition 4.4 Let T' U {C} be a set of object logic formulas. Then

].) FH E]M,Idl,Id/Q,stI‘L,?LFJ, [C] Zﬁ FH Elm; ?LFJ, (C-|
2) Fu £J,Id1,1d/2,StTL, WR,?I_FJ, ’—C—| iff Fi ﬁ]j,?LFJ, |—C—|

Proof Inthe = direction, we proceed in the same fashion as in Proposition 4.3. We prove that, for
say minimal logic, if by L, Idy, Idy, Strr, Fi : Fa, [C A then by Lim, Fi1, Fo : [C] 1, where Fy U Fy
is a multiset of |-| meta-level atoms and C' is any object-logic formula. The main interesting case
is when the proof of - K : F5, [C] 1 starts by focusing on (Dr), where K = Ly, Idy, Idy, Strr,, Fi.
There is only one resulting focused derivation, due to the presence of the bang in (Dr), and it has
two open premises of the form - K : 73, |B[,[C] f and - K : F2,[A] 1, in which case the proof
proceeds the same as in Proposition 4.3. O

Proposition 4.5 Let 'UA U{C} be a set of object logic formulas. Then

1) by Lar, Idy, Strr, 2T, [C] dff o L£F 21T, [C]

2) "11 £],Id17StI“L, WR7?\_FJ7 |—C-| lﬁ "]1 E{],?LFJ, |_C-|
3) "11 £,Id1,St1"L,StTR,?|_FJ,?I_A] Zﬁ |—11 E{k77\_FJ77|—A~|

Proof This proposition is proved in a similar way as the Propositions 4.3 and 4.4. O

It is well known that for the sequent calculus systems LM€, LJ¢ and LK€ the cut-elimination
theorem holds. A direct consequence is the admissibility of the Ids rule in the theories considered for
these sequent calculus systems, as states the following proposition.
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Corollary 4.6 Let T UA U{C} be a set of object logic formulas. Then

].) Fu LM, Idl7 StrL, 7LFJ, ’701 Zﬁ FH EM, Idl, Id/2, StrL, 7LFJ, (C-|
2) '—]1 [:J, Idl, SU“L, WR, ?LFJ, |—C-‘ Zﬁ |—11 EJ, Idl, Id;, StrL, VVR7 ?LFJ, |—C-|
3) '—11 £7 Idl7 SU“L, StI"R7 ? \_FJ s r7|—A~| Zﬁ "11 £, Idl, Idg, StI"L, StrR7 ?LFJ y 7|_A1 .

The proof of this corollary follows from the admissibility of the cut rule [Gentzen 1969] and the
encoding of the cut-free sequent calculus (Proposition 4.2). To see a setting in which the admissibility
of the cut can be shown by directly considering the linear logic specification of inference rules, see
[Miller 2002, Pimentel 2005].

4.4 Natural Deduction

The proof system depicted in Figure 4.10 is the V, A, and D intuitionistic fragment of the classical
system in [Sieg 1998], presenting natural deduction using a sequent-style notation: sequents of the
form I' - C 1 are obtained from the conclusion by a derivation (reading bottom-up) where C' is not
the major premise of an elimination rule; and sequents of the form I' - C' | are obtained from the
set of hypotheses by a derivation (from top-down) where C' is extracted from the major premise of
an elimination rule. These two types of derivations meet with either the match rule M or the switch
rule S. These two types of sequents can be used to distinguish general natural deduction proofs
from normal form proofs [Prawitz 1965]: normal proofs are those in which the major premise of an
elimination rule is not the conclusion of an introduction rule. Within the proof system in Figure 4.10,
such proofs are exactly those that do not allow occurrences of the switch rule S. To the rules in
Figure 4.10 we can add the introduction and elimination rules for vV and 3 given in Figure 4.11. In
those rules, occurrences of 1(]) denote either T or | with the proviso that all occurrences of 1(]) in a
given inference rule are resolved the same way. Characterizing normal form proofs involving V and 3
is more involved to describe and we shall not consider such normal forms here.

We write I' F,; C' to indicate that the natural deduction sequent I' = C' T has a proof in NJ and
write I' . C' to indicate that the natural deduction sequent I' = C' T has a normal proof in NJ: in
this latter case, we shall restrict the formulas in I' U {C'} to have no occurrences of V and 3.

The theory L,; in Figure 4.12 encodes natural deduction for intuitionistic logic. The formula
Stry, is incorporated in the theory by adding ? to some positive occurrences of |-] atoms and to
maintain the invariant that there is always at most one formula in the right-hand-side of sequents,
we add ! to negative occurrences of |-|*. The judgment I' - C' 1 is encoded as the meta-level sequent
F Ly, [T : [C] and the judgment I' - C' | is encoded as the sequent = £,;, [T'] : |[C]*. In order for
this encoding to be adequate at the level of derivations, we simply change the polarity assignment
from what was used with sequent calculus: in particular, we assign atoms of the form |-] with
positive polarity and atoms of the form [-] with negative polarity. This change in polarity changes
left-introduction rules (within the sequent calculus) to elimination rules (within natural deduction).
For example, the formula (D) now encodes the implication elimination rule as is illustrated by the
following derivation (here, (D) € K):

FK:|AD Bt PR FK AT ,
I e T S T L ST T
n n [2 X ®]
FK:[B]* U |AD Bt ®([A]®|B])

[DQ,Q X 3]
KB

The change in the assignment of polarity also causes the formula Id,, which behaved like the cut
rule in sequent calculus, to now behave like the switch rule, as illustrated by the following derivation,
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T-FA>B| THAT
THB|

T,AFB1
FFADBT[

[D E] DI

THEAG |
TFF|

TFFT THGY
TFEAG]

[AE] [A]

THVYrAl

—tveal I Ale/z} 1
T+ A{t/z} |

VE] P-vz A7 7]

THA| THAT

rF1]
rarap W rear Mo |

rrer M rrey L

S|

Figure 4.10: The rules for the D, V, and A fragment of intuitionistic natural deduction NJ.

I'FAVB| T,AFC () T,BFC 1(]) T A1

TFC1() VBl g M
FF3zA| T,A{c/z}FC1(]) L'+ A{t/z} 1
TEC () BEL espay B

Figure 4.11: The rules for V and 3 for intuitionistic natural deduction. In VL, i € {1, 2}.

(or) [AD Bt e([Al®|B)) (>r) [AD B+ (?[A] » [B])
(Ag) [AAB|*®(|A]®|B]) (A1) TAABIE @ ([A]&[B])
(Ve) !|AVB]*®(?|A] &?|B]) (Vi) [AvB]*t®([Ale[B])
(Vg) |VB]* ® |Bz] (Vr) [VB]* ®Vz[Bx]

(3g) ![3B]* ® Va?|Bx] (37) [3B]* ® [Bx]

(L) [L)* (tr) [treT

(L) [ClrelL

(Idy) |[B]*- @ [B]+ (Id;) |B]@![B]

Figure 4.12: The specification £,; for intuitionistic natural deduction.
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where Id, € Y.

g ESAD Ol
FE T let g o] Y FST ]
X (T [C] L C]®![C]

X (0] O]
These two examples can be developed for all inference rules in Figures 4.10 and 4.11 and for
focusing on all formulas in Figure 4.12. As the last example above suggests, we can capture normal
natural deduction proofs if we remove instances of Id), from L£,;. More specifically, let Lﬂj be the set

of formulas £,; except that we drop Idj and the formulas encoding the introduction rules for V and
3. As a result, it is an easy matter to prove the following proposition.

[D273]

Proposition 4.7 Let TU{C'} be a set of object-level formulas and assume that all [-] atomic formulas
are given a negative polarity and that all |-| atomic formulas are given a positive polarity. Then
I b, C if and only if Fue Lyj, [T 2 [C] . Also, if the formulas in T U{C} contain neither V nor 3,
then I' B3 C'if and only if e £f,j, IT]:[CT 1.
Proof The proof is by structural induction over the height of trees. Most of the cases are included
in the Appendix A.1 to further illustrate how these encodings work. O

Now that we have adequately encoded natural deduction derivations via the theory L£,;, we can
show how some (known) meta-theory results of intuitionistic logic can be achieved using these en-
codings. For example, we show in Proposition 4.10 below that sequent calculus proofs and natural
deduction proofs prove the same formulas. First, the next two lemmas relate £,; and Eij with the
formulas in Figure 4.1 and 4.2.

Lemma 4.8 Let ' U {C} be a set of object logic formulas. Then
b L, Idy, Idy, Stry,, Wg,?(T), [C] iff Fu Ly, ?|T), [C].

Proof The proof follows the same lines as the proof of the Proposition 4.3. The main difference
in the < direction is that we also use the equivalence |C|+ =!|C|* obtained from Stry.

In the = direction, we first prove the following equivalence, by induction on the height of proofs
and by assigning negative polarity to all [-] atoms and positive polarity to all |-] atoms:

Fue Loj, [T [C A iff Fye Ly, Strg, [T] 2 [CT

The case for when Stry, is focused on is the most interesting one. There are two cases, either (1)
the resulting premises are of the form & L, Strr, |I'| : [B]* 1 and & Ly, Stry, [T, B : [C] 1, for
which case we can use a linear-logic cut rule with cut formula ?|B]|: one premise is provable due
to the induction hypothesis, and the other is provable also by the induction hypothesis, but by first
introducing the ! in the cut formula !|B]*; or (2) the premises are of the form + L,;, Stry,, [T'] :
|B]+,[C]  and & Ly, Strr,, [T, B] : - ). In this case, because the elimination rules permute over
introduction rules in natural deduction, we can assume that the proof of - £,;, Strr,, [T'| : [B]+, [C] 1
finishes with a derivation that focuses only on formulas encoding (natural deduction) introduction
rules and has premises of the form t L,;, Strr,, [IV]| : | B]* {). Here, there must be no other linear
formula in the context, otherwise this sequent is not provable by applying only the encodings of
(natural deduction) elimination rules, as these derivations would always contain a premise with at
least two linear formulas, and hence one is never able to apply the initial rule. We then proceed as
in the first case, but with the difference that we postpone the introduction of the bang of the cut
formula, !| B]*, until when these premises are reached.

From the Str; formula we derive the equivalence |C|+ = !|C|*, which allows us to obtain the

equivalent theory, £};, from L,; by replacing all occurrences of '1C]+ by |C]+. Now, we show
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the following intermediate result by induction on the height of proofs and using the same polarity
assignment as before:
Fur Eilj,StI‘L,}_l,}_g : |—C-| It iff Fyr [:J,Idl,Id/Q,StTL,fl : Fo, |—C-| T
where F; and F; are sets of |-] atoms and C' an object-logic formula. This direction follows imme-
diately from this intermediate result and the focusing theorem. O
The proof of the following lemma is similar to the proof of Lemma 4.8.

Lemma 4.9 Let T'U {C} be a set of object logic formulas that do not contain occurrences of V and
3. Then
ki L, Idy, Strr, Wg, 2T, [C] iff Fu £5;, 7T, [CT.

From Propositions 4.4 and 4.5, Lemmas 4.8 and 4.9, and Propositions 4.1, 4.2, and 4.7, we obtain
the following relative completeness result between LJ¢ and NJ.

Proposition 4.10 IfT'U{C} be a set of object-level formulas, then I -j; C if and only if T F,; C.
Furthermore, if the formulas in T U {C} contain neither V nor 3 then T’ l—{j C if and only if ' F7; C.

Treating negation (in particular, falsity) in natural deduction presentations of intuitionistic and
classical logics is not straightforward. We show in [Nigam 2008c| that extra meta-logic formulas are
needed to encode these systems. Since the treatment of negation in natural deduction is not one
about focusing in the meta-level, we do not discuss this issue further here.

4.5 Natural Deduction with Generalized Elimination Rules

Schroeder-Heister [Schroeder-Heister 1984] considered a form of natural deduction where the indirect
style of elimination rules used for V and 3 (see Figure 4.11) were also applied to conjunction. Von
Plato [von Plato 2001] used that style of elimination rule for all connectives. In Figure 4.13 we
present an additive version of a natural deduction system with generalized elimination inspired by
one found in [Negri 2001, page 167]. The bracketed formula in an elimination rule is called the major
premise. To encode proofs in natural deduction using generalized elimination, we use the theory L.
shown in Figure 4.14. Intuitively, L, is obtained from £ by using the formula Stry, to insert ! and ?
connectives and using the identity rules to replace negative literals |C'|* by the positive atoms [C].

In order to match focused proofs using Lz with the proofs in Figure 4.13, we assign negative
polarity to all |-] and [-] meta-level atomic formulas. For example, focusing on the formula (D) in
Figure 4.14 yields the following derivation, where K = L, U |T']:

FK:[ADB] 1 KAl - K, B : [C] 1
Feaas s P Segaray B Sy Y
FK:[Cl 0 [A> Bl ([A] = 7[B)) 2> @]

- O] 1 D2 23|

We can repeat this computation for all formulas in £z and in the process, prove the following
proposition.

Proposition 4.11 Let T' U {C} be a set of object-level formulas and assume that all meta-level
atomic formulas are given a negative polarity. The sequent I' = C is provable in GE if and only
if = Lge, |T'] : [C] 1 is provable in LLF. Furthermore, adequacy for derivations also holds between the
respective proof systems.
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FF[ADB}F'F_FCA F,BFC[DGE] %[31}
FI—[A/\J?]FI;’,A,BI—C[/\GE] WW}
T'-[AV B ?;450 LBEC op %[v”
Crled] DAMYDEC oy DEAla
rk[axA]FBé{c/x}FC [3GE % [31]

I

rarall el g

Figure 4.13: The rules for intuitionistic natural deduction system with generalized elimination rules,
GE. The major premises of elimination rules is marked with brackets.

(Or) MADBl@ ([Al®?|B]) (o>1) [AD Bt @(?[A] » [B])
(Ae) MANB]® (?[A] ®?|B]) (A1) [AABIH @ ([Al & [B])
(Ve) AV B]® (?[A] &7|B)) (Vi) [AV Bt ([Al®[B])
(Vg) ![VB]®?|Bz| (V7) [VB]* ®Va[Bz]

(3g) !3B|* @ Va?| Bz (3r) [3B]* ® [Bz]

(L) [Li] (tr) [t1+eT

(Le) [CTh@L
(Idh) |BJ* @ [B]+

Figure 4.14: The specification L, for intuitionistic natural deduction with generalized elimination
rules.
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Proof The proof is by structural induction over the height of derivations. We show here only some
of the cases, involving general elimination rules. The introduction rules are similar to the cases with
introduction rules in the encoding of Natural Deduction in Proposition 4.7. In the derivations below

K= LgUIT].
I'+-[AAB] T,A,BFC
TrC [NGE]
- K, AL |B] : [C] )
FK[AABID SK: [0 12 1AL o) 2
FK:y!1[AAB] R e O 174 % 7LB] (R, 9]
FK:[C]VIAAB|® (2[A] % ?(B]) ]
|_K:|_C-|’ﬂ‘ [DQ,QXH]
'+ [VzA] T,A{t/z}FC
THC [VGE]
PRVBLY KB C
F/C:l}!’—VB] I—]C:[C‘Ill?LBtJ
FK:[C] Y ![VB] ®?|Bt] [
|_1C|—C~|ﬂ [DQ,QXH]

O

Given this linear logic theory, which encodes natural deduction with generalized elimination rules
at our strongest level of adequacy, we turn to showing how L, relates back to the sets of formulas
shown in Figures 4.1 and 4.2.

Proposition 4.12 Let T' U {C} be a set of object logic formulas. Then, if by Lge,?|T'],[C] then
bu Lg,1dy, Idy, Strr,, 2T, [C. Furthermore, if by £, 1dy, Stry, 7|, [C] then by Lge, 2T, [C].

Proof The second statement is proved in the same lines as in the proof of Proposition 4.3. For
the first statement, we use a theory L'}, equivalent to L£;, that is obtained by replacing literals of
the form |C|+ by the formula [C]+ > L, in the clauses (V1) (AL), (D), and (V1) in £;. Although
|C|*+ and |C|*+ > L are logically equivalent, they have different focusing behaviors, as the latter
has negative polarity regardless of the polarity given to |C']. Now, we assign negative polarity to all
meta-level atoms and prove, by induction on the height of proofs, that if Fyr Lge, F1, F2 : [C'] 1 then
Fue L, 1dy, Id,, Strp, F1 : Fo, [C] 1, where Fy UF, is a multiset of |-| meta-level atoms. In this proof,
when necessary, we use the formulas Id, and Stry, in £/, to obtain a derivation for a sequent of the form
= L', Idy, Idy, Stry, Fi : Fa, |C|* ft with open premise of the form - £/}, Idy, Idy, Strr,, Fi, Fo : [C] 1.
The statement follows directly from this intermediate result and the focusing theorem. O

Notice that from the lemma above, L,.’s expressiveness lies between a theory that does not contain
Id}, and that theory with Id,. From Corollary 4.6, however, we know that the Id, clause is admissible,
so the following corollary holds.

Corollary 4.13 Let ' U {C} be a set of object logic formulas. Then
P £, Idy, Idy, Strr,, ?(T), [C iff Fu Lge, 7T, [C]

Although we obtain a theory that encodes GE with the strongest level of adequacy, we find it
odd that Lz does not relate so easily with other intuitionistic/minimal theories, since we used cut-
elimination in the object-logic to establish the formal connection. We believe that the system as it
is written does not pinpoint exactly where the clause Idj is needed. A similar problem happens in
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TFASB| THA T,BFC1(]) ,AF B

I'C1(l) 2o rrasei Y
F}—A/\Brll_g,{‘(ll)BFCT(l) INGE] FFFP;TFAFGFTGT (A]
THAVE | 11:7|—AC|'_TZ) LEFCIW (ap % V]
PR AL DA O g, S
rkaxALF i,élia/)x}FCT(l) 3GE] m [31]
W e M e S e e L

Figure 4.15: The rules for the natural deduction with generalized elimination rules and with annotated
sequents, GEA.

(or) lADB|te([Al®?[B])  (D1) [ADB]*e(?[A] = [B])
(Ae) AABJ*©(?[A]®?[B]) (A1) [AABI- @ ([A] & [B])
(Ve) ![AVB]*® (?[A] &?|B]) (Vi) [AvVBl*®([Ale[B])
(Vg) !|VB]* ®?|Bx] (Vr) [VB]* ®Vz[Bz]

(3g) !3B|* @ Vx?|Bx] (3r) EBH ® [Bz]

(L) [L)F (tr) [t]*

(Lp) [ClrelL

(Idy) [B|*®[B]* (Idy) |B]®![B]

Figure 4.16: The specification Lge, for intuitionistic natural deduction with generalized elimination
rules.
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traditional presentations of natural deductions that do not use annotated sequents and do not contain
the M and S rules (Figure 4.10). The S rule allows a natural deduction proof to have the major
premise of an elimination rule be the conclusion of an introduction rule. Negri and von Plato in
[Negri 2001] call such pairs of inference rules detour cuts and it is these pairs that correspond to the
cut rule in sequent calculus. We present a variant of GE, called GEA (Figure 4.15), that makes these
detour cuts apparent by using two types of annotated sequents: I' - C' 7 and T' = C' |. We denote by
the judgment e, provability in GEA (possibly containing the inference rule S and, hence, detour
cuts), and we denote by the judgment l—gea, provability from GEA without the inference rule S.

To encode GEA, we use the theory, Lg,, shown in Figure 4.16, and we assign negative polarity
to all [-] meta-level atoms and positive polarity to all |-] meta-level atoms. As before with natural
deduction, the sequents I' - C' T and I' = C' | are encoded by meta-level sequents of the form
F Lgea, [T'] 2 [C] ft and b Lgea, [T : |C ]+ 11, respectively. Now, the formula (D) in Lge, encodes the
generalized elimination rule for implication in GEA, as illustrated by the following derivation, where
K = Lgea U |T'| and F is either [C] or [C|*:

FK:|AD Bt K [A] K, |B|:Fq
Y e S TR Sy o
. L x
FK:F!ADB|*®(I[A] ®?|B]) D23

FK:F Q)

d

We can repeat this style computation of focused derivation for every formula of Lg,,,

the following proposition.

thereby proving

Proposition 4.14 Let TU{C} be a set of object-level formulas and let L3, = Lgeo \ {Idy}. Assume
that all [-] atomic formulas are given a negative polarity and that all |-| atomic formulas are given

a positive polarity. Then

1) r l_gea CT lﬁ |—Hf Egeaa LFJ : ’701 ﬂ‘ 2) r '_gea OT Zﬁ |—11f [’gea’ LFJ : |—C-| ﬂ
3) [ tdea CLff bup LI, [T] 2 [C]F 1.

Proof The proof is similar to the proofs of Propositions 4.7 and 4.11. O

The following proposition can be proved similarly to the proof of the Lemma 4.8. This proposition
provides the more careful placement of the Id, meta-level axiom that motivated our introduction of
the annotated proof system.

Proposition 4.15 Let I'U{C} be a set of object logic formulas and let L3, = Lge, \ {Id2}. Then

gea

1) by Ly,1dy, Strr,, Wg, 2T, [CT iff bu L, ?(T],[C]

gea’

2) by Lg,1dy, Idy, Str, W, ?[T), ?[CT iff b Lgea, 21T, [C].

Negri and von Plato in [Negri 2001] identify another type of cut, called permutation cuts, which
occurs whenever the major premise of an elimination rule is the conclusion of another elimination
rule. They also propose a different notion of normal proofs, called general normal form, for proofs
in natural deduction with generalized elimination rules where both detour and permutation cuts do
not appear. In particular, derivations in general normal form are such that the major premise of
elimination rules are assumptions. In other words, the major premises in the generalized elimination
rules shown in Figure 4.15, are discharged assumptions. We write I' ™ C' to denote that there is a
general normal form proof of C' from assumptions I'. In our framework, this amounts to enforcing,
by the use of polarity assignment to meta-level atoms, that the major premises are present in the set
of assumptions. We use the theory Ly, obtained from £§ea, by replacing formulas of the form !|C|+
by |C]+, and assign negative polarity to all atoms of the form [-] and [-], to encode general normal
form proofs, represented by the judgment .
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T'FAA=B TFAA I,BFA

TFA = CE]
NA=BFA T,AFA NdA=B+FA TFHAB
FTFA A NA T A FA NNAABFA THAA THAB
TFA INGEI] TFA NG
'AJAvB TAFA T,BFA [MAIVAEFA TFAA;
TFA VGE] TF A Ve
-AFA T,AFA 'A,-A THAA
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Figure 4.17: The rules for free deduction, FD.
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Figure 4.18: The specification L¢; for free deduction.

Proposition 4.16 Let I'U {C} be a set of object-level formulas. Assume that all meta-level atomic
formulas are given a negative polarity. Then I' =" C'if and only if by L., [I'] : [C] 1. Furthermore,
adequacy for derivations also holds between the respective proof systems.

Proof Proof by structural induction on the height of derivations. O

Proposition 4.17 Let T U {C} be a set of object logic formulas. Then
b Ly, Idy, Strr, W, 2|, [C iff bu Lge, ?[T'], [C]

Proof This proposition is proved in a similar way as Proposition 4.4. O
The following corollary is a direct consequence of Propositions 4.2, 4.5, 4.16, and 4.17.

Corollary 4.18 Let T’ U{C} be a set of formulas. Then T' =" C if and only if T l—lfj C.

4.6 Free Deduction

In [Parigot 1992], Parigot introduced the free deduction proof system for propositional classical logic
that employed both the generalized elimination rules of the previous section and generalized intro-
duction rules. The inference rules for free deduction proof system are given in Figure 4.17. In order
to treat classical negation here, we introduce the negation =B directly here and do not treat it as an
abbreviation for B = 1.

We use the theory L in Figure 4.18 to encode free deduction. To obtain the strongest level
of adequacy, we assign negative polarity to all meta-level atoms. For example, the formula (—GI5)

!Later and independently, Negri and von Plato also introduced generalized introduction rules in [Negri 2001, p. 214].
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encodes the inference rule =G1Iy, as is illustrated in the following derivation, where K = LU | JUTA]:
FIC, [-AT A FIC,TA] A
— o BN e
FKC ) ?7[-A4] FIC:?7[A]
K ?[-A] @ ?[A]
FIC:

(R, 7]
[2 x ®]

[D273]

We can repeat this computation for all formulas in L and in the process, prove the following
proposition.

Proposition 4.19 Let TUA be a set of object-level formulas. Assume that all meta-level atomic for-
mulas are given a negative polarity. Then T'F A is provable in FD iff & L, |T], [A] A} is provable
in LLF. Furthermore, adequacy for derivations also holds between the respective proof systems.

Proof The proof is by structural induction on the height of derivations. We show here some of
the cases only, involving general introduction rules. The cases for the general elimination rules are
similar to the corresponding cases in Proposition 4.11. In the derivation below K = L U [I'] U [A].

NA=BFA T,AFA

TFA [= ¢l
FE LA - R
PIC,LA:>BJ:~TT[RTT . F K 7 A] [ ﬂ[’@']]
K ?[A= B] bR ?Ale?[B] L
"R A= Bla (A0 ED | 252]
FK:-f %
T AANBF A FFI_FAA,A I'A,B G|
I—IC,(A]:-TT[?] FIC,[B]:-TT[?]
I JAAB] ) KAl Y FKA?[B] Y
FK L ?[AA B S - K 1 ?[A] & ?[B] - [F &
FK:?|AAB]® (2[A] & ?[B]) D27

I

O

In order to relate the theory Ly back to other theories, we must first replace — by “implies false.”
We do this by using the operator ¢ inductively on propositional formulas as follows: ¢(FAG) =
¢(F)Ad(Q); for all binary connectives A, ¢(—=F) = (¢(F) = L1); and ¢(4) = A if A is an atom.
Moreover, ¢(T") = {¢(F) | F € T'}, where T is a multiset of formulas. We offer the following theorem
as a means to related the provable formulas of L¢; with those in other classical theories.

Proposition 4.20 Let I' U A be a set of object logic, propositional classical formulas. Then
Fu L£,Idy, Idy, Strr,, 7| o(D) ], ?[6(A)]  iff Fu L, 7T, ?[A].

Proof The <« direction is proved in similar way as Proposition 4.3, by using the equivalences
obtained from the structural and identity rules.

The = direction is proved in similar way as in Proposition 4.3, by assigning negative polarity
to the meta-level atoms. However, for the inductive case when the clause Ids is focused on, we use
Parigot’s observation that any instance of a sequent calculus cut-rule is translated in Free Deduction
to a sequence of elimination and introduction rules whose main premises is the cut-formula. O

From Propositions 4.3 and 4.20, we have the following relationship between sequents provable in
free deduction and those provable in the LK sequent calculus.
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Corollary 4.21 Let I’ and A be sets of propositional, classical formulas. Then I' = A is provable in
FD if and only if $(T) = ¢(A) is provable in LK*.

Parigot notes that if one of the premises of the generalized rules is “killed”, i.e., it is always the
conclusion of an initial rule, then one can obtain either sequent calculus or natural deduction proofs
with multiple conclusions. The “killing” of a premise is accounted for in our framework by the use
of polarities to enforce the presence of a formula in the context of the sequent. Our encoding of the
LK calculus could be explained by just using such a focusing restriction. A presentation of a natural
deduction with multiple conclusions could be obtained in a similar way as for the natural deduction
with single conclusion but with the main difference being that one has to also incorporate the Strp
rule in the theory by adding ? to positive occurrences of [-] atoms and negative occurrences of |- ]
atoms.

4.7 The Tableaux Proof System KE

In the previous sections, we dealt with systems that contained rules with more premises than the
corresponding rules in sequent calculus or natural deduction. Now, we move to the other direction
and deal with systems that contain rules with fewer premises.

In [D’Agostino 1994], D’Agostino and Mondadori proposed the propositional tableaux system KE
displayed in Figure 4.19. Here, the only rule that has more than one premise is the cut rule. In the
original system, the cut inference rule appears with a side condition limiting cuts to be analytical
cuts, that is, rules where the cut-formula is a subformula of a formula in the end-sequent: since that
condition does not seem to be treated naturally in our context, we consider only the unrestricted cut
rule.

To encode KE, we use the theory L. in Figure 4.20. To obtain an adequacy on the level of
derivations from L., we assign negative polarity to all atoms [-] and [-]. As before, the negative
occurrences of [-] and |-] enforce the presence of formulas in the sequent, but now, Ly, contains
formulas with two negative occurrences of meta-level atoms. These formulas encode the KE rules
that contain only one premise. For example, the clause (=12) encodes KE’s inference rule =, as
illustrates the following derivation, where X = £, U |, A = B] U [A, B]:

[[2] M[R@ ‘?] 7[12]
FK: A= BJt K 2[A] " RK B
FK:) A= Blf o (2[A] @ [B]Y) Dy2 e 12> @]
FK »

By checking all the other the inference rules generated by focusing on formulas in L., we can conclude
with the following proposition.

Proposition 4.22 Let I' U A be a set of object-level formulas. Assume that all meta-level atomic
formulas are given a negative polarity. Then T' b A is provable in KE iff b Ly, [T, [A] o is
provable in LLF.

Proof The proof is by structural induction on the height of derivations. We show only some of
the cases. In the derivations below K = Ly, U |[T'] U JA].
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Figure 4.19: The rules for the classical propositional logic KE.
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Figure 4.20: The specification Ly, for the system KE.
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O

The following proposition is proved by induction on the height of proofs, by taking into consider-
ation the equivalences obtained by the identity and structural rules, and by using the operator ¢ to
replace — in formulas by its “implies false” meaning.

Proposition 4.23 Let I' U A be a set of object logic, classical, propositional formulas. Then
Fu L£,1Idy, Idy, Strr,, Strr, 7| (D) |, ?[o(A)]  iff Fi Like, 7| T, ?7[A]

Proof The proof is similar to the proof of Lemma 4.3. O
The following result, establishing the equivalence between KE and propositional LK€, is a direct
consequence of Propositions 4.1, 4.3, 4.22 and 4.23.

Corollary 4.24 Let I' and A be a set of propositional formulas. Then I' = A is provable in KE if
and only if ¢(T) i ¢(A) is provable in the propositional fragment of LK.

4.8 Smullyan’s Analytic Cut System

To illustrate how one can capture another extreme in proof systems, we consider Smullyan’s proof
system for analytic cut (AC) [Smullyan 1968a], which is depicted in Figure 4.21. Here, all rules except
the cut rule have no premises. As the name of the system suggests, Smullyan also assigned a side
condition to the cut rule, allowing only analytical cuts. As in the previous section, we shall drop this
restriction as it is not directly captured in our framework.

We again assign negative polarity to || and [-] atoms and use the theory L,., shown in Figure
4.22, to obtain the strongest level of adequacy. For example, the formula (=) corresponds to the
inference rule =, in AC, as illustrates the following derivation, where I = L, U |I'| U[A] such that
A= B,AeTl and B € A:

ko vassr P re g P ey
2 x ®]

FK:- | [A= Bl* o (At [B]Y)
FE:-

[DQ, 2 X 3]

Again, the following proposition follows from repeating such constructions for all formulas in £,.
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Figure 4.21: Smullyan’s Analytic Cut System for classical propositional logic, AC, except that the
cut rule is not restricted.
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Figure 4.22: The theory L,. used to encode Smullyan’s Analytic Cut System AC.

Proposition 4.25 Let I'U A be a set of object-level, classical propositional formulas. Assume that
all meta-level atomic formulas are given a megative polarity. Then T' = A is provable in AC iff
F Lac, ||, [A] At is provable in LLF. Furthermore, adequacy for derivations also holds between the
respective proof systems.

Proof The proof is by structural induction on the height of derivations. We show only some of
the remaining cases.

T AVEr ABA [V

I e T LA I L

FKy - [AV Bt e ([A]r @ [B1Y)
Ry
where Ky = L, U |I'AV B|U[A, A, B].

[12]
[2 X ®|

[D2,2 X 3]

— 7 |[2]
Fia:- U AN B]T K- [A]R @ [B]E
FKA:- U [AABIE @ ([A1 @ [B]Y)
TANBrAA Ml FKn 1

[©1]
[©]
[DQ, 2 X 3]

where K = L, U [T, AANB|UJAA]. O
Again by using the equalities obtained from the identity and structural rules and the operator ¢,
we obtain the following proposition.
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Proposition 4.26 Let I' U A be a set of object logic, classical propositional formulas. Then
'_H 'CaIdlaIdQ»StrLaStrRa ?L¢(F)Ja ?I—(ﬁ(Aﬂ Z.[f '_H »Caca ?LFL?'—A—I

Proof The proof is similar to the proof of Proposition 4.3. O
The following result follows directly from the Propositions 4.1, 4.3, 4.25, and 4.26.

Corollary 4.27 Let I’ and A be a set of classical, propositional formulas. Then T' = A is provable
in AC if and only if ¢(T) b ¢(A) is provable in the propositional fragment of LK®.

4.9 Related Work

A number of logical frameworks have been proposed to represent object-level proof systems. Many
of these frameworks, as used in [Felty 1988, Harper 1993, Pfenning 1989], are based on intuitionistic
(minimal) logic principles. In such settings, the dualities that we employ here, for example, |B] =
[B]*, are not available within the logic and this makes reasoning about the relative completeness
between object-level proof systems harder. Also, since minimal logic sequents must have a single
conclusion, the storage of object-level formulas is generally done on the left-hand side of meta-level
sequents (see [Hodas 1994a, Pfenning 2000]) with some kind of “marker” for the right-hand side (such
as the non-logical “refutation” marker # in [Pfenning 2000]). The flexibility of having the four meta-
level literals | B|, [B], | B]*, and [ B]* is not generally available in such intuitionistic systems. While
it is natural in classical linear logic to consider having some atoms assigned negative and some positive
polarities, most intuitionistic systems consider only uniform assignments of polarities to meta-level
atoms (usually negative in order to support goal-directed proof search): the ability to mix polarity
assignments for different meta-level atoms can only be achieved in more indirect fashions in such
settings.

The abstract logic programming presentation of linear logic called Forum [Miller 1996] has been
used to specify sequent calculus proof systems in a style similar to that used here. That presentation
of linear logic was, however, also limited in that negation was not a primitive connective and that all
atomic formulas were assumed to have negative polarity. The range of encodings contained in this
chapter are not directly available using Forum.

In [Ciabattoni 2008], Ciabattoni et al. consider a general approach to the specification of structural
rules in sequent calculus which differs from our approach of specifying structural rules. In particular,
their method would not use the exponentials of linear logic, as we do in the clauses Str; and Strg,
but would rather treat structural rules more explicitly by having rules of the form

|B]* @ (1B]® [B])

to encode the contraction-left rules (of the sequent calculus).

4.10 Conclusions and further remarks

We have shown that by employing different focusing annotations or using different sets of formulas
that are (meta-logically) equivalent to £, a range of sound and (relatively) complete object-level proof
systems can be encoded. We have illustrated this principle by showing how linear logic focusing and
logical equivalences can account for object-level proof systems based on sequent calculus, natural
deduction, generalized introduction and elimination rules, free deduction, the tableaux system KE,
and Smullyan’s AC system employing only axioms and the cut rule.

We now point out some directions for future work:
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e Size of proofs — An interesting line of future research would be to consider differences in the

sizes of proofs in these different paradigms since these differences can be related to the topic of
comparing bottom-up and top-down deduction. Thus, it might be possible to flexibly change
polarity assignments that would result in different and, hopefully, more compact presentations
of proofs.

Transform proofs between different systems — Although we used the same theory to encode
(open) derivations of different proof systems, we did not investigate how to transform a proof
in one system to a proof in another system. These transformations would have to deal not only
with the use of equivalent formulas, such as using additive or multiplicative conjunctions, but
also deal with the change in the polarity assignment of the meta-level literals.

One way of transforming a focused proof with one polarity assignment to another focused proof
with a different polarity assignment is by using foculisation graphs (see Section 2.5). Let =
be a focused proof with a polarity assignment. We first remove the focusing annotations from
=, obtaining hence, the proof Z'. Then we transform Z’ into a focused proof with a different

polarity assignment by using the foculisation graphs obtained with this new polarity assignment.

Encoding natural deduction mormal form proofs — In this chapter, we have only been able
to encode the natural deduction normal form proofs that did not contain disjunctions and
existential quantifiers. When these connectives are allowed, normal form proofs contain not
only an introduction phase and an elimination phase, but also a phase between these two
phases called segment. The problem of encoding these type of proofs is that the encoding of the
existential and disjunction elimination rules does not enforce that these rules appear between
the introduction and elimination phase. However, it is easy to check that the derivations
encoding the other elimination rules permute over the derivations encoding the elimination
rules for existential quantifiers and disjunctions. If one could permute downwards all derivations
encoding disjunction and existential elimination rules, we would be able to encode normal form
proofs. A way to do so is to use the notion of maximally multifocused proofs [Chaudhuri 2008a].
Multifocusing is a trivial generalization of focused systems, where not only one formula can be
focused on, but a set of formulas can be focused. Chaudhuri et al. showed the existence of
maximally multifocused proofs where one focuses on the multiset containing the most formulas.
We speculate that normal form proofs would correspond to maximally multifocused proofs.

Analytic cuts — We were not yet able to give a logical account for the side condition on analytic
cut-rules. The answer for this problem does not seem easy. One way to do so, is to express the
subformula condition implicitly by using meta-level initial rules. For example, one could use
special tokens for analytic cut formulas, such as | 4|, and [A],, that would have to necessarily
“match” subformulas, |A] and [A], of any formula in the endsequent in an meta-level initial
rule. Although this type of approach might work to express complete set of proofs for KE and
AC, there are at least two problems with this approach. First, we cannot encode all proofs
of AC and of KE, “only” a complete set of proofs. Second, one cannot check locally that the
cut-formula used satisfies the subformula condition, but only when the encoding of the analytic
cut is used in a meta-level initial.

More flexible polarity assignments — We have only considered a global polarity assignment for
|-] and [-] meta-level atoms. One could imagine more flexible polarity assignments, where
some occurrences of | -] (resp. [-]) are assigned positive polarity and other occurrences negative
polarity. Since changing polarity assignments does not affect provability one would obtain yet
another complete proof system. Another future work is to find good applications for such proof
systems.
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While focusing at the meta-level clearly provides a powerful normal form of proof, we have not
described how to use the techniques presented in this chapter to derive object-level focusing proof
systems. Finding a means to derive such object-level normal form proofs is an interesting challenge
and we will tackle this problem in Chapter 6.






CHAPTER b

Linear Logic with subexponentials

It is well known that the linear logic exponentials are not canonical: suppose that we have two pairs
of exponentials; one pair colored as blue, 1° and ?°, and the second pair colored as red, I” and ?", with
the following introduction rules:

F2tr, F

FT,F 7
L oy PP FT,F

1 - r r
R —orrr UL s P

One cannot show that I"F = I°F for any formula F.

In fact, it is possible to fill the gap between the “linear” modality and the ? modality in linear
logic with a preordered set of exponential-like operators. These intermediate modalities may or may
not permit weakening and contraction. We introduce the term subexponential for such modalities
since the exponential equation ?(A @ B) = (YA '@ ?B) fails when contraction and weakening are not
admitted for 7. In this chapter, we discuss linear logic proof systems that contain subexponentials.

The remainder of this chapter is structured as follows: in Section 5.1 we introduce the linear
logic system SELL with subezponentials. Then in Section 5.2 we propose some focusing systems for
SELL, first considering the case where relevant formulas, which can contract but not weaken, are
not permitted, and then we consider the general case where such formulas are also permitted. In
Section 5.3, we propose an extension to SELL where subexponentials can be instantiated or created,
and propose a focused version of such a system. Finally, in Sections 5.4 and 5.5 we finish the chapter
by commenting on related works and pointing out directions for future work.

References: parts of this chapter are in [Nigam 2009a].

5.1 Linear Logic with Subexponentials

Danos et al. proposed in [Danos 1993] a linear logic system that contains non-canonical connectives for
exponentials which we refer to as subexponentials. A subexponential signature is the tuple (Z, <, W,C)
where 7 is a set of indexes, with the “colors” of the subexponentials, < is a preordered relation' over
the elements of the set of indexes Z, and W and C are both subsets of Z. Given a subexponential
signature ¥ = (Z, <, W, C), the rules for SELLy, are the same as in linear logic, except that we add
the following rules for the subexponentials.

e For each a € Z, add the usual dereliction rule for 7%;

- O, A

7a
F2eC, A 1Dl

e For each a € W, add the usual weakening rule for ?%; and for each b € C, add the usual
contraction rule for ?°;

N -2°C,?°C, A

— = [w?e c?’
I—?“C,A[W] F2°C A el

LA preorder relation is a binary relation that is reflexive (a < a) and transitive (if a < b and b < ¢ then a < ¢).
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e Add the following promotion rule for all a € Z:

F 2Ry, 70, O
-2y, .., 7, 100

"]

with the proviso that a < z; foralli=1,...,n.

The sets W and C in the subexponential signature specify which subexponential indexes in 7 allow for
weakening and contraction, respectively. The preorder < is used only in the promotion rule. One can
only introduce a subexponential bang of index a (for short, a-bang), if there are only formulas whose
main connective is a subexponential question-mark of index z (for short, z-question mark) where
a =< x. Hence, from an operational point of view, one must check if all indexes x are greater than a.
We will elide the subscript ¥ from SELLy, whenever the subexponential signature X is clear from the
context. Moreover, notice that when the subexponential signature is of the form ({u}, <, {u}, {u}),
where the preorder is the trivial identity relation, then SELLsy, corresponds exactly to the usual
linear logic system. As we will point out later, this restriction over the subexponential signatures is
necessary to prove the cut-elimination theorem for such logics.

For any subexponential signature X, the De Morgan’s laws for the subexponentials in ¥ are
provable in SELLy,

(Rt =7t (Pt =rpt
As usual, we denote by F- the negation normal form of F', obtained by using the De Morgan’s laws
to push the negation inside the formula.

Since some subexponentials may or may not allow contractions and weakening of formulas, the
equivalences, which give exponentials their names, are not necessarily provable in SELL, but only
some directions, hence the name subexponentials. Consider the following subexponential indexes
ceC,weWand u € WNC, then the following formulas are provable in SELL, for any formulas P
and Q:

o« E(P&Q)—(P) @ (°Q) o ("P)&("Q) —!"(P&Q);
(P& Q) — (7"P) ® (1"Q) o (°P)% (°Q) < *(P®Q);
(P& Q) = ("P) @ (I"Q); o MMP®Q)=(T"P)® (7"Q).

We also classify formulas into four different groups: we classify as linear or bounded the formulas
that are not allowed to contract nor weaken; as affine the formulas that are not allowed to contract
but are allowed to weaken; as relevant the formulas that are allowed to contract, but not allowed to
weaken; and as unbounded the formulas that are allowed to weaken and to contract.

Danos, Joinet and Schellinx showed in [Danos 1993] that the cut rule is admissible in SELLy, if
the subexponential signature satisfies the following condition: (i) if ¢ € C (resp. ¢ € W) then for
all j such that ¢ < j, j must also belong to C (resp. W). That is, the subexponential indexes are
closed upwardly over contraction and weakening. From now on we only consider such subexponential
signatures. Moreover, they also showed that because of the reflexivity of the preorder relation, one
can use only atomic initial rules.

Definition 5.1 A subexponential signature, ¥ = (Z, <, W, (), is consistent if for all 7, j € Z,if i € W
(respectively C) and i < 7, then j € W (respectively C).

Proposition 5.2 Let 3 be a consistent subezponential signature. A formula F is provable in SELLy,
if and only if it is provable in SELLy, by only using instances of atomic initial rules.

Proof As in the proof of Proposition 2.1, we use transformations of the form:
FE FL
I FE 2Rt
F1eF 20 FL . ~ IR 29 F+

[D7]
"]
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Notice that this transformation works only because the relation < is reflexive. O

Theorem 5.3 Let X be a consistent subexponential signature. Then, the cut elimination theorem
holds for SELLsy,.

Proof The proof is similar to the proof of cut elimination in classical linear logic. We show here
only the cases involving the subexponential question-marks and bangs. First we show that, whenever
a rule is applied to a formula in the right (or left) premise of a cut rule, the cut rule can permute
over this rule. For example:

T, P

FI,P FAQ 7P FT,I°P FA,Q,7°Pt
FT,1P F APQ, 7Pt FT,A,Q
FT,APQ o FT,APQ

This transformation is valid because the relation < in X is a preorder. From the left branch of the
cut, we know that I" contains formulas whose main connective is a x-question mark such that a < =z,
and from the right-premise, it must be the case that b < a and that A contains formulas whose main
connective is a y-question mark such that b < y. From transitivity of the preorder < it is the case
that b < x, and therefore the permutation works.

Now, we proceed with the elimination of cut. As usual, we first specify the degree §(A) of a
formula A, inductively, as follows:

1. 6(A) =1, if A is a literal;
2. 5(A®B)=0(A® B)=6(A& B) =6(A® B) = maz{6(A),d(B)} + 1;
3. 6(1"A) = §(?"A) = 6(A) + 1, where i is a subexponential index.

The degree of a cut is defined to be the degree of the cut-formula, and the degree of a proof the
supremum of the degrees of the cuts in the proof.

We show that one can reduce the degree of a proof by performing the following key transformations.
Here, we also assume that the degree of the subtrees have degree strictly less than the degree of the
proof-tree.

One can replace, for any subexponential index 4, the derivation to the left by the derivation to
the right with lower degree:

FT, A FA AL

DA R A7 AL FD,A FA AL
FT,A ~ FT,A

In the next transformation, the need for the restrictions imposed on subexponential signatures %
becomes apparent. Because of the application of the promotion rule for I’ in the derivation on the left,
it must be the case that all formulas in I have as main connective a subexponential question-mark
with index greater or equal to i. Moreover, because of the weakening of the formula ?* AL, it must
be the case that ¢ € W, and hence, from the restrictions on consistent subexponential signatures, all
formulas in T' can also be weakened. This allows us to use the derivation on the right with lower
degree.

FT,A FA
FDA F A7 AL FA
FT,A ~ FT,A
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There is another transformation, called pseudo key-case (shown below), which involves contraction
and is necessary for the cut-elimination algorithm, but that does not decrease the degree of proofs.
This case highlights the need for the restriction that subexponentials indexes are upwardly closed
with respect to contraction. Here, since the promotion rule is applicable in the left branch of the
derivation to the left, the main connective of the formulas in I' must be subexponential question-mark
with index greater or equal to i, and, therefore, one can also contract I" because i € C.

FT, A
FD,A FDVA B A 7PAL 77445
FT,A R A ?7AL 271 AL FD,IA FT,A,77AL
FD, 1A FA,?7PAL FILEA
FT,A ~~ FT,A

Then the proof proceeds as in the proof of cut-elimination in linear logic, by induction on the
height of trees and using the key-cases and pseudo key-cases to eliminate cuts in the proof. For
example, if the proof is of the form to the left, where (F)"~! denotes that there are n — 1 copies of
the formula F', then we can permute the dereliction downwards, obtaining the derivation to the right:

A, (7PAR) AL

FA (PA)R AL A 7AL AL
FT, A BA (AL AL FT,A R A7AL 7L
D, 1A FA,?7PAL FI, 1A FA,?7PAL
FT,A - FT,A

We then apply the pseudo key-case transformation and permute the cut upwards, obtaining the
derivation to the left and to the right respectively:

A, (7PAL) 1 AL FT,A FA (AL AL
FT,A FA AL AL FD,IPA FA 7P AL AL
FILA FDVA A 7°AL 274L FT,A FT,A, A+
FT,I'A FT,A, 77 AL FT,I'A FT,A, 7P AL
FT,T,A FT,T,A
FILA e FL,A

Now, we can use the key-case to obtain the following derivation, on which we apply the induction
hypothesis to the adequate subtree, to obtain a proof of smaller degree:

FT,A A (AN AY
FI,1PA FA AL AL
FT, A FT, A, AL
FT,T,A
FT,A

Here, we do not show the rest of the proof, but we invite the more interested reader to have a
look at the technical report [Braiiner 1996]. O
5.2 Focusing in linear logic with subexponentials

To propose a focused system for SELLs,, we follow the steps of Andreoli [Andreoli 1992] and of
Saurin et al. [Miller 2007b] by first proposing a proof system that incorporates the structural rules
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for contraction and weakening into the logical rules. However, since we are dealing with more than
two modalities, we propose, instead of a dyadic system, a polyadic system where there is one different
context for each subexponential index.

As proof search is performed from the root towards its leaves, one wants to postpone as much
as possible the application of structural rules. In the dyadic system proposed by Andreoli, this
corresponds to applying weakening rules just before initial rules and contractions before the tensor
and dereliction rules. We will use the same motivation when proposing the polyadic system, but some
extra considerations arise when considering subexponentials.

Differently from linear logic, the weakening rule does not permute with all logical rules, namely it
does not permute over promotion rules. Consider for example the sequent F 7% P, !bQ. Because of the
side condition in the promotion rule, the weakening of ?° P (here assuming that a € W) will permute
over the promotion rule if b < a, otherwise one must first weaken ?“P. Hence, the polyadic system
for such a logic differs from Andreoli’s dyadic system for linear logic, as weakening occurs not only
before initial rules, but also immediately before promotion rules.

Contraction is also a bit more involved than in Andreoli’s dyadic system. Because of relevant
formulas, that is, formulas that can contract but not weaken, we cannot freely perform contraction of
this type of formulas since once contracted the new formulas created must later be used. On the other
hand, one can contract unbounded formulas without losing completeness because, once contracted,
the created formulas can be later weakened. In the next subsection, we start with the simpler case
for proof systems constructed using subexponential signatures, (Z, <, W, C), such that C C W, that
is, proof systems that do not allow relevant formulas. Later, we will discuss the case when relevant
formulas are also permitted.

5.2.1 Case without relevant formulas

A polyadic system is constructed by using polyadic sequents. Polyadic sequents are specified as
follows:

Definition 5.4 Let ¥ = (Z,=<,W,C) be a subexponential signature. Then a polyadic sequent for ¥
is a pair, written as = K : I, with a multiset of formulas, I', and with a function, K, from the set of
subexponential indexes 7 to the set of multisets of formulas.

The polyadic sequent - K : T’ denotes the linear logic sequent, = ?K[l1],..., ?""K[l,],T obtained
by collecting the formulas in the multiset K[l;], for each [; in the domain of K, and prefixing all the
formulas in K[l;] with the subexponential b, Moreover, we derive the function of the polyadic sequent
corresponding to a monadic sequent as follows: let S be the monadic sequent - 7**©4,...,7*"0,,, T,
then the function Kgs of a corresponding polyadic sequent - Kgs : I is defined as follows:

0, ifc=u
’CS[C]:{ 0 ifedg{r,...,z,}

This is a straightforward generalization of Andreoli’s dyadic sequent. Notice that I' might contain
formulas whose main connective is a subexponential question-mark, and, therefore, the same monadic
sequent might have several associated polyadic sequents. However, we will make sure that it is clear
from the context which multisets ©; in a sequent S that we are using to construct the function Kg.

Before we show the polyadic proof system for SELL, we first specify some operations over functions
of polyadic sequents K, K; and Ky for a subexponential signature ¥ = (Z, <, W, C):

(KM ifi=i
"Céim{w ifi 41

where ¢ € 7 is a subexponential index.
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Kl7]=U{Kli] | ie T}
where J C 7 is a set of subexponential indexes.

Kliju{A} iti=1
Kli] otherwise

(-4 400 = {

where A is a formula.

Let J C T be a set of subexponential indexes, and x € {=, C, C} be a binary connective. Then
(K1 % K2) |7 is true if and only if Vi € J.(KC1[i]  K2[i]).

L[ Ki[iluKeli] ifi¢cC
(Kr @ Ko)li] = { K1l otherwise if i € CNW

Here, we use the multiset union.

Notice that the function K; ® K> is only well defined when C C W, which is assumed true in this
subsection. In the next subsection, we will fill in the gap.

The rules for the polyadic system, SELLY, for SELLsy,, are given in Figure 5.1. The promotion rule
and the one introduction rules are the most interesting ones. Their side-conditions enforces that the
only side-formulas are those that allows one to introduce the main connective as seen in the previous
section. For example, in the promotion rule, one must make sure that the side-formulas premise only
contains formulas whose main connective is a question-mark with an index greater or equal to the
index of the bang introduced.

Theorem 5.5 Let ¥ = (Z, <X, W,C) be a subexponential signature, such that {z1,...,2,} C 7T and
C CW, and let S be the sequent - 7**04,...,7*"0,,,I". Then,

S is provable in SELLsy, iff - Ks : T is provable in SELLY,

Proof We make use of the following lemma, which is proved by induction on the height of deriva-
tions.

Lemma 5.6 Let ¥ = (Z,=<,W,C) be a subexponential signature, such that {y1,...,yn} CW, and let
O1,...,0, be multisets of formulas. If - Ky : T has a proof in SELLE, then t Ko : T has a proof of
the same height in SELLY,, where Koly;] = K1ly:) U{©;}, for all i =1,...,n, and Ks[c| = K[| for
allc ¢ {y1,...,yn}

Proof By induction on the height of proofs. O

We prove the completeness direction by induction on the height of trees. Here we show some of
the inductive cases, according to the last rule in the proof of - 7**©,...,7""0,,,T.

e Case %:

F?7%10y,...,70,,T, A, B -
F770,,...,7"0,,1,A% B

If the premise of this rule is called S; and its conclusion S, then, from the induction hypothesis,
there is a proof of - Ks, : I, A, B in SELL.. It is easy to check from their definitions that the
functions Ks, and Ks are equivalent. Therefore, from the %® introduction rule in SELLY,, there is
also proof of the sequent - Ks : ', A® B in SELLY..

The cases for the rules T, L, &, ®;,1,3, and V are similar.

e Case ®:

F?meld,.. . 7mel T, A F?mes ... 7"e2 AB
Fomelrme? .., 7"el 7"e2 T AJA® B

[]
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Assume that the premises of this rule are called S; and Sy and its conclusion, S, then, by induction
hypothesis, there are proofs in SELLS, of the sequents + Ks,,T', A and - Ks,, A, B. From Lemma
5.6, there are proofs of the same height for the sequents - K5 ,I', A and + K, , A, B, but where
Kl [x;] = ©} U7 for all z; € CNW and K [¢] = Ks, [c] for all other indexes c. Hence, there is also
a proof of the sequent - s, I, A, A ® B.

e Case D?"": there are two subcases to be considered:
(1) If the dereliction occurs in a formula in O;:

- 7710y,...,7710;,...7"0,,T, P
F770,,...,770,,7%P,...7"0,,T

(D7)

Assume that the premise of the rule is called S; and its conclusion, S, then by the induction hypothesis
there is a proof of - Ks, : ', P in SELLY,. Now, we distinguish two subcases: a) if 2; ¢ C W, then,
from the rule D7, the sequent - s : T has a proof in SELLY,; b) if 2; € C N'W, then, from the
Lemma 5.6, the sequent - Ks : I', P has a proof in SELLE, of the same height. Finally, from the rule
D17, the sequent F Kg : I is provable in SELLY,.

(2) If the dereliction occurs in a formula in T

F?291Q,,...,7"0,,T, P
- ?770y,...,7"0,,T,7°P

(D77

In this case the reasoning is similar to the previous case, only that we first apply an instance of the

rule 7€ rule:
FKs+c.P:T

e 7]
FKs:T,7°P

The cases for the rule C?7°, W?7° and !° are again similar. One just needs to use the fact that
contractions permutes over all rules except tensor and dereliction rules and that weakening permutes
over all rules except promotion rules.

Now we prove the soundness direction, which is also by induction on the height of proofs. Here
we show only some of the cases:

Fara !l
U

_ x W%
FK:ALA e F Kl KA ™ ]

Notice that, only because of the side condition K[Z \ W] = () in SELL%,’s initial rule, we can weaken
all the formulas in the context.
The case for the rule 1 is similar.

FK:T,A B F 2" K], -, 2 Klen), T, A, B kel
KT A%E T o TRl 7 K., A B
The cases for &,V,3, T, L, and @; are similar.
FALALT,A FALALAB (]
l_’C12F7A l_’CQZA7B ® Fjxiijim‘A;)‘/\gaFvA714(8B [mXC()LEi]
FKi®Ke:T,AJA® B [©] ~ Ay AL AZT,AA® B )

where A, = {?"P | z; € Cand P € (K1 ® Ko)[zi]} and A} = {?"'P | 2; ¢ C and P € K;[z;]}, for
7=12.
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FAs, A "
FK <A FAs A -
7.—2 "] = [m x W7¥]
KA ~ FAs Ayt A

where A> = {?"'P [l X z; and P € K[z;]} and Ay = {?"'P [ I £ z; and P € Klz;]}. Notice that
we can weaken the set Ay because of the side condition K{z |l AxzAx ¢ W} =0 in SELLY’s
promotion rule.
F7710q,...,7710,,7A,...70,,T A
FRIAT F 75O, 790, AT A, L 7O, T
o T U B F 770y, 70,7 A, L 10, T

Notice that we can contract the formula ?** A because of D;7%’s side condition A € K[C N W].

[D7]
(077

K AT 2710, ... 70, A,T
kAT Yl L Time,. e, PAT

[D7']

O

Now we are ready to introduce the focused system SELLFy, depicted in Figure 5.2. As in An-
dreoli’s tryadic system, we add the context to the left of the arrows {} and | that contains only
positive formulas and literals. Notice that one could incorporate this new context in the function
by assigning a new element in its domain, say —oo, such that K[-oo| returns the multiset of formulas
in this context. However, we do not have any good reason to do so, and, therefore, we prefer the
system closer to Andreoli’s tryadic system.

For proving the completeness of SELLFy,, we adapt the machinery introduced in the proof of
the focusing theorem for linear logic in Chapter 2 (see Theorem 2.8). Notice that we assume here a
global polarity assignment for literals. However, one could easily adapt the proof to accommodate
more flexible polarity assignments such as the ones proposed by Saurin et al. in [Miller 2007b].

Definition 5.7 Let ¥ = (Z, <, W, C) be a subexponential signature. For all [ € Z, the subexponential
connectives !' are classified as synchronous and the subexponential connectives 7l as asynchronous.

Lemma 5.8 Let o be an inference rule and 3 be an asynchronous rule. Then «/(.

Proof The permutation cases are similar to those in Lemma 2.10. For example, the case for ® /&

is shown below:
FICle,F,A FIC1:F,F,B

l"Clll_‘,F,A&B [&] I_ICQZA,G
FK, 9Kky T.AFRG ALB (]

the tensor rule permutes over the with rule as follows:

FK:TLF A Ky [] FKi:TF,B FKq:
FEK®Ks: FAF@GA FEKL®Ks: FAF@GB
FKiKe :IAFRG,A& B

< ol
[&]

The subexponentials do not cause problems. For example, the @; rules permute over ?! rules:

IC+IPIF,F [?l] K—i—lPZF,F [@]
K:TI,F?"P 1] K+1P:F,F®G[?l]1
K:T.FaG?P ' " ~  K:T.FeG1p "
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LoagicAL RULES

FK:DA FK:DB o FK:T,A B

k. racs M T azs®

FX:T
FC:T,T [T FX:T, L [
FIC:T, A{t/z} 5 FIC:T, A{c/x} v
FEX:T,3z A Bl FI:T,Vz A [¥]
"K:ZF,AZ‘ |_IC]_ZF,A "K:QZA7B . -

FET A o4 P TR ok, 1A Aep (@ provided that (K= K) ferw]

FK:AT
FKEC:T

FIC<;: A
ﬁ [, provided K[{z |l 2 2 Az ¢ W}] = 0]
m [.[7 pI'OVided IC[I \ W} = @]

FK:AT

[D1?', provided A € K[CNW]| FX AT [Dy?', provided I ¢ CNW]

STRUCTURAL RULES

FKX+,A:T

ol
KT, 7A ]

Figure 5.1: The polyadic system SELLS,.
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ASYNCHRONOUS PHASE

CKiTHLA FKTALB o FKiTHLAB
FK-T{LA&B Tt nass
LK T L
oot !l Frorpoo M

HC:ML,A{c/x}v FK+ AT L
FIC:T 1 L,Vz A [ FK:TAL,2A

7]

SYNCHRONOUS PHASE

FICT A FKi:TUA FKo:AUB , B
KTl Aeh, P TER ek T AlAnp (9 provided (R =Ka) few]
. B HIC: T A{t/x)
e g b provided KZA W] =) K Tyaa U
FE<:-f A
}—IC_ll}'TlTA [1', provided K[{z |l Az Ax ¢ W}] = 0]
REACTION, IDENTITY, AND DECIDE RULES
: P
FK+ P: Ty P . FX:TYP .
KL P T1. [Dy, provided I € CNW) FKL P T1- [Dy, provided I ¢ CNW)|
FK:TyP KT AN FK:T, S L
I—IC:F,Pﬂ-[Dl] Hc;ruN[RM l—IC:FﬁL,S[Rm

Figure 5.2: The focused system SELLFs,. Here, ¥ = (Z, <, W,(C) is a subexponential signature, such
that C C W; L is a list of formulas; I' is a multiset of positive formulas and literals; A, is a positive
polarity literal; P is not a negative polarity literal; S is a positive formula or a literal; N is a negative
formula.
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Lemma 5.9 Let o and 3 be two synchronous rules. Then «/f3.

Proof The proof is similar to the Lemma 2.11. We show only some of the cases:
o (®/®1):

K, :T,F P

] FK:T,EP FKy:AG
FK:DLEPaQ YUY FK i AG

FICl ®K23F,A,F®G,P

[]

ek TAFacrag P L Thek narecrag o
o (©1/D2):
KT, FQ FK:T,F.Q
HC:F,F,P@Q[%] HC:F,FGBG,Q[@l]
FK T FaGPoo @ FKTFoGPog o
e (®/9):
F KT F Pl FKDEPI] FKiAG
F K, T.F.3zp FKiAG KK LA FSG P g
I_K:1®K:QIF7A7F®G,E|$P ~ "’C1®IC22F,A,F®G,E|1‘P

O

We use the same definition of positive trunks given in Definition 2.13. We also distinguish each
occurrence of formulas, F', created from dereliction rules, by assigning to it a different number i, like
(F,1i), as specifies the following definition.

Definition 5.10 Given a positive trunk, II, of the sequent F I : I, we assign to every occurrence of
a dereliction rule, D1?! and D»?', in II, a unique index (F,1) to the occurrence of formula F' created.
The active formulas in IT are the active formulas in I" and the indexed formulas (F, 7).

We also use the same relation <y specified in Definition 2.15 and show that this relation is still
acyclic.

Lemma 5.11 The relation <y is acyclic.

Proof The proof is similar to the proof of Lemma 2.16. The new promotion and dereliction rules
do not cause any problems for the same reasons as in linear logic. O

Lemma 5.12 Let IT be a positive trunk, S be the root sequent of I1 such that it cannot be the con-
clusion of any asynchronous rule, and F be a minimal element in I1. If ' is a formula created by a
dereliction, then there is a proof of S where F' is created and a rule is applied to it last. Otherwise,
if F' is not created by a dereliction, then there is a proof where a rule is applied to F' last.

Proof The proof is similar to the proof of Lemma 2.18. O
The completeness of SELLFy, follows with the same reasoning as Theorem 2.8 by using the per-
mutations lemmas and the focalisation graph above.

Theorem 5.13 Let ¥ = (Z, <X, W,C) be a subexponential signature, such thatC CW. Then SELLF,
is sound and complete with respect to SELLsy.
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5.2.2 Adding relevant formulas

In the previous subsection, we assumed that C C W and, therefore, performing contraction did not
affect provability because, after creating a formula by using the contraction rule, one could always
weaken this formula later. In this subsection, we drop this assumption and also allow relevant formulas
in the logic. In this case, contraction cannot always be done, as, once a relevant formula is contracted,
it can no longer be weakened and thus must be used in some logical rule.

As before, we try to postpone as much as possible the contraction of relevant formulas. The
contraction rule still permutes over all rules, except tensor rules and dereliction rules. For example,
contraction permutes over ' rule:

-T,A,B,7°P,7°P - FT,A,B,7°P,7°P
FT,A% B,7°P,7°P o] -T,A,B,7°P
-T,A B,7°P ‘ ~ FT,A% B,7°P

[C7]
%]

However, there are some cases when contraction rules do permute over tensor and dereliction rules,
namely when there are already at least two copies of the contracted formula, as illustrates the following
transformations:

FT,A,7°P,7°P,7°P + A, B
FT,A,A® B,?°P,7°P,7°P
FT,A,A® B,7°P,7°P

-T,A,7°P,7°P,7°P
FT,A,7°P,7°P - A,B
FT,A,A® B,7°P,7°P

[®]
[C7]

7]

[]

FT,A,7°P,7°P A, B,7°P 5] -T,A,7°P,7°P o]
FT,A,A® B,7°P,7°P,7°P e FT,A,7°P LA B P -
FT,A,A® B,?°P,7°P : FT,A,A® B,?7°P,7°P
FT,7°P,7°P, P FT,7°P,7°P, P
b ) ) D?C ) b ) ?C
FT,?7°P,7°P,7°P { C()C]] -T,7°P, P [l[)C?’C]]
- T,7°P,7°P : -T,7°P,7°p

Hence, whenever there is more than one copy of a relevant formula, ?°P, in the context, one can treat
these formulas as bounded formulas and split them in the tensor rule, postponing their contraction.
Moreover, even when there is only one copy of a relevant formula, ?°P, in the context, one can
permute its contraction over the tensor rule, namely when all copies goes to one of its branches, as
illustrates the following transformation:

FT,A,7°P,7°P +A,B
FT,A,A® B,?7°P,7°P
FT,A,A® B,7°P

T, A,7°P,7°P
FT,A,7°P - A,B
FT,A,A® B,7°P

(@] [C?]

(7]

[]

The only case when a contraction cannot permute over a tensor is when there is only one copy of
the formula in the context and after contracting it, the copies are split by the tensor (illustrated by
the derivation to the left); and the only case when a contraction cannot permute over a dereliction
is when there is only one copy of the formula in the context and before applying the dereliction rule,
this formula is contracted (illustrated by the derivation to the right):

FT,A,7P FA,B,7P @) - T,7°P, P D7
T,A,A® B,?7°P,7°P e - T,7°P,7°P [C‘;c]
FT,A,A® B,?°P ‘ - T,7°P ‘

Summarizing: for both the tensor and the dereliction rule, whenever there are two copies of a relevant
formula, ?°P, in the context, we do not need to contract them; otherwise, if there is only one copy of
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a relevant formula, then there are two options, either do not contract it, or contract it once and for
the tensor rule, split the two copies among its branches.

We formalize this intuition as follows: assume that I € C\ W, then (K1 ® K2)[!] is a sub-multiset
of the multiset /C;[l] U K3[l] such that all formulas in the multiset ¢ = K1[I] U Ko[l] \ (K1 ® K2)[l]
have multiplicity one in the multisets §, K1 [l], K2[l] and (K1 ® K2)[l]. Intuitively, ¢ represents the
formulas that were created by contracting formulas. The conditions over the formulas in § guarantee
that only the formulas that appear once in (K; ® KCa)[l] are contracted (given by the condition of
having multiplicity one in (K1 ® K2)[l]). Moreover these formulas are contracted only once (given by
the condition of having multiplicity one in ¢) and the two copies are split in the functions K; and
K2 (given by the condition of multiplicity one in /C1[l] and Kz[l]). We use the same tensor rule as in

SELLF:
FKi:TUA FKo:AUB

I_K:1®K:2F,AU/A®B

[®, provided that (K1 = K2) |crw]

Now, for the dereliction rule, if we do not want to contract a relevant formula, P, we use the
following decide rule (that is already in SELLF):

FK:TUP

FKP:T1- [D;, provided [ ¢ CNW)

otherwise, if there is only one copy of P in the context, then we use alternatively the following decide
rule that contracts P:
FK+ P: TP
FK+ P:T1-

[D;, provided I € C\ W and {P, P} ¢ K[l]]

We call the system obtained by adding the rule above to SELLFy, as SELLFJEr . The following
theorem is a direct consequence of the discussion above.

Theorem 5.14 Let ¥ be a subexponential signature. Then, SELLF; is sound and complete with
respect to SELLy..

One could imagine even tighter conditions for when one does not need to contract relevant for-
mulas. Consider, for example, the subexponential indexes ¢ < d such that c€ C\ W and d € CNW,
and that the formula P € K[c] N K[d]. In this case, one does not need to contract ?°P because one
can always use the “safe” copies created by contracting the formula 24p.

We now consider an alternative focused system for SELLsy;, called SELLF%, where the contractions
of relevant formulas are not implicit in the logical rules, but occur in a third focusing phase, between
the asynchronous and synchronous phases. The system SELLF' g is obtained by adding the following
rule to the system SELLFx:

FK+ P:T 1

9¢ -
KT [C?¢, provided P € K[l] and I € C\ W]

and for the tensor rule, we do not contract relevant formulas, but split then. This is formalized by
defining (K; ® K9)[l], for I € C\ W, as the multiset K1[l] U K3[l]. Hence, (from bottom-up) at the
end of the asynchronous phase, one is allowed to either decide on a formula using the decide rules
in SELLy;, or contract relevant formulas. This creates a new phase between the asynchronous and
synchronous phases, similar to the cut phase discussed in Section 3.5 of Chapter 3.

This new system is complete because all synchronous rules permute over contractions, hence we
can permute all contractions in a synchronous phase down to the beginning of this phase; and on
the other hand, since contraction rules permute over all asynchronous rules, we permute all contrac-
tions appearing in the asynchronous phase up to the end of this phase. We show here some of the
permutation cases involving synchronous rules and contractions:
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FT,A,2°P,2°P o7 FT,A,7°P,2°P +A,B o)
FT,A,7°P ' rAB (o) FI,A,A® B,?7°P,?°P o7
FI,AA® B,7°P > FI,AA® B, 7P '
FT,A,7°P,7°P . FT,A,7°P, 7P
— o5 17 5 oep |91
FT,A,7°P o] FT,Ae B,? P,?P[C?C]
FT, A B,?2°p "t o FT,A® B,?7°P '
- T, Alt/2], 7°P, 7°P o] R T, Alt/a), 7P, 2P
F T, Alt/z], 7°P . ' - T,3zA,7°P,7°P [([jlc]
FT,3zA,7°P o FT,3zA,7°P '
FT,A,7°P, 7P o] - T, A,7°P,7°P D7
FT,A 7P (} FT,794,7¢P,7°P se
d c [D? ] d c [C ]
- 1,774, 7°P s FT,7%4,7°P

Theorem 5.15 Let ¥ be a subexponential signature. Then, SELLFg is sound and complete with
respect to SELLs..

It is worth noticing that we cannot permute all rules over contractions, and hence we cannot
consider just one “contraction phase” appearing at the bottom of the tree. The problem is that the
& rule does not permute over contractions, as illustrates the following derivation:

FT,A,7°F,. .., 7°F
FT,A,7°F

FT,A7°F,. .., 7°F
FT,A,7°F
[&]

[m x C79)

[n x C79

FT,A& B, 7°F

Since the number of contractions of ?°F is different in the two different branches (m times in the left
branch and n times in the right branch), we cannot permute the & rule over all contractions.

5.3 Creating and modifying subexponentials

Until now we assumed that there is a global subexponential signature specifying the existing subex-
ponentials and the relations among them. Now, we consider extending SELLy, with new connectives,
m and U, that can change subexponential signatures of the logic or instantiate subexponentials. We
call SELL™ the system that contains such connectives.

The sequents in SELL™ contain a subexponential signature declaration, as in the sequent ¥ - T,
where I' is a multiset of formulas and ¥ = (Z,<,W,C) a subexponential signature. The rules in
SELL™ are depicted in Figure 5.3, where the following operations over subexponential signatures
¥ = (T1, =1, W1, C1) and Xo = (Ta, <9, Wh, Co) are defined as follows:

e X U3y is the tuple (Z; UZs, <1 U <o, Wi U Wy, C1 UCa);

o ¥ CEiff 7y CZy, =1 C =9, Wi CWhs, and C; C Cs.

Theorem 5.16 The cut-elimination theorem holds for SELL™.
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Proof The proof is similar to the usual linear logic cut-elimination proof. Because of the new
connectives M and U, we have the following new key case:

=1 =2

SUS, FL,P  YEA P =60 Es
SFT,A%.P S AuUS.Pt SFT,P0 YA P
YFT,A - SFL,A

where 6 = [s1/l1, ..., 8, /1]
It is easy to check that the derivation =6 is indeed a proof. We show this by induction on the
height of =;. The only interesting case is when the last rule is the promotion rule:

SET,C )
Sk, ec "

By the induction hypothesis, there is a proof of the sequent (X F I',C)#. Assume without loss of
generality that lipe I, this would imply that ¢ < ; is valid in the signature ¥. Hence, it must be
the case that ¢ < s; is valid in the signature X6, and therefore there is a proof of (X T',!1°C')0. The
case when ¢ € {l,...,l,} is similar. Then the proof proceeds as usual (see |Braiiner 1996]). O
The focused system for SELL™, called SELLF™, is similar to the focused system SELLY;, just that
the subexponential signatures are now declared in the sequents of the rules. For example, the tensor
rule in SELLF™ is
SEK:TA YHEK:AUB
Z}—IC1®IC2F,AUA®B

[®, provided that (K1 = Ks2) |enw]

Moreover, we add the following two rules for the new connectives M and W:

EUEZFK:FﬂL,C[ﬂ] SEK:TUClsi/lyy...,80/ln)
SEFK:TAL,as.C SFK:TJus.C

Y]

with the proviso that ¥ U ¥; is a consistent subexponential signature for the @M rule, and the proviso
that 3;[s1/l1,...,8,/ly] C X for the W rule.

We use once more foculisation graphs to prove that SELLF™ is complete. We classify the connec-
tive M as asynchronous and U as synchronous. The remaining definitions (for the foculisation graph,
=) are used as before. We continue showing the permutation lemmas.

Lemma 5.17 Let o be an inference rule and 5 an asynchronous rule. Then a/f.

Proof We show only some of the cases involving the new connectives. Notice that augmenting
the subexponential signature does not affect provability, one just has to take care to rename the
“bounded” indexes when needed.

o (®/m):

SUSEK G DAP SUSIFK D AP SUS Ky AB
s Tam? ™ sk, AB - SUS FKi®Ke:T,A A® B, P [ﬁ][ |
SFKL @Ky :T,A A® B, P — NFK @Ky T.A AR B,ax.P

o (&/M):
zulec:r,A,Pm zulec:r,B,Pm
SFK:T, AP " SFK.T,B,a5.P [8”(]

SFK:T,A& B,n%,.P -
SUS FK:T, AP SUSFK:T,B
SUSFK:T,A&B, P -
SFK:T,A& B,ax.P "

[&]
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IDENTITY RULES

o YFT,PL SFAP
S+ PPt SFTL,A

[Cut]

LoaicaL RULES
SkD

sei s s T
LEL P SHI,P ST,
SHT,PL 6Py SFT,P&Q
ZELPQ o EXLP SFAQ
YEILLP9Q SFI,AP®Q
YT, Plt/a] SET, Plefa]
Srr3p U Srrver Y
YEI,P
m [D?¢, provided ¢ € Z]
SEC,.. 7, C . |
1y-- ) ['°, provided z;,c € Z and ¢ X z;, for all i = 1,...,n]

SE 770, .., 7O 1°C

USRI, C

E}—FIW’O [m, if X U is consistent]
) l-

SET,Cls1/l1y ...y 8$n/la]
Y FT,u%.C

[@7 if El[81/117~-~a51z/l'rL] g E]

STRUCTURAL RULES

YT

YFT,7°P

9c :
ST 7P [C?¢, provided ¢ € C]

[W?¢, provided ¢ € W]

Figure 5.3: The inference rules for SELL™. Here ¥ = (Z,<,W,C) and ¥; = (I}, <, W;,C;) are
subexponential signatures, such that Z; = {ly,...,l,} is a set of new subexponentials, the preorder
=<1C 7 x Z, the sets of indexes W,;,C; CZ, and Z = Z; UZ is set of subexponential indexes.
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o (U/m):
ZUZ;I—ICFPGQ[] YUX EK:T, PO,Q ]
YHK:T,Po,A%.Q ] SUS K :T,Us).Po,Q )
SFK:T,US].P,A%.Q - SFK:DUSPas.Q
o (M/M):
SUSIUS FK:T,P,Q SUSUSIFK:T,P,Q
SUXFEKE:T, PAY.Q o] YUS K :T,A%.Po,Q [
SFK:T,A%,.P,0%.Q [ s SEK:T,n%.P,0%.Q [

where P# is a substitution instantiating some subexponential indexes in P. O
Lemma 5.18 Let o and 8 be synchronous rules. Then «/f.

Proof We only show some of the cases involving the new connective U.

o (®/U):

YK :T,A P ] S KT, A PO EFICQ-AB[®]
SEKy:L,A U, P ZHC2:A,B[®] SFKi®Ks:[,A,A® B, P ]
E"]C1®]C22F,A,A®B,@21.P ~ El_lC1®K:2 FAA@B UEl

o (U/®):
SHK:T, PO A SEL:DPYA
THK: FPGA@B[[L]] YFK:T,U%,.P A[][@]
SHK:T,US,.P,Ad B ~~ SFK:T,us,.P,AaB !
o (U/U):
SHK:T,Po QY ] S HK:T,Po,Q0 ]
S+K:T,P,us,.Q u S+ K:L[,U%,.P,Qb ]
S FK:T,us,.P,us).Q > S FK:T,U8,.P,Uus.Q
O

It is easy to check (with the same reasoning as in Lemma 2.16) that the new connectives do not
affect the acyclicity of the relation <y.

Lemma 5.19 The relation <5 s acyclic.

The following soundness and completeness theorem follows, as in Theorem 2.8, by using the
permutation lemmas above and the fact that < is acyclic.

Theorem 5.20 SELLF™ is sound and complete with respect to SELL™.

5.4 Related Works

Schellinx shows in [Schellinx 1993] that one can capture the dynamics of cut-elimination of the modal
logic S4 by using subexponentials. We need two colors of subexponentials, say 0 and 1, where the
subexponential 0 is bounded and is weaker than the unbounded subexponential 1. Intuitively, the
subexponential 0 is used to denote the modals ¢ and O in S4, and the subexponential 1 is used
to denote the usual linear logic exponentials. Then, Schellinx proposes a translation of modal logic
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formulas, which uses these subexponentials, for which the dynamics of cut-elimination in S4 are
captured in linear logic.

Elsewhere [Hernest 2008], Hernest and Oliva used two subexponentials, k£ and g, to mix two
different functional interpretations of linear logic formulas, namely the unbounded subexponential
k for Kreisel’s modified realizability [Kreisel 1959] and the unbounded subexponential g for Godel’s
Dialectica interpretation [Godel 1958], where k < ¢. In this hybrid interpretation, one can combine
features of these different functional interpretations, such as the extensionality schema rule x £ Yy —
fx £ fy, by using Kreisel’s modified interpretation, or Markov’s principle, =Vz.A(z) — Jz.-A(z),
by using Godel’s dialectica interpretation.

Closer to the contents of this chapter, Hodas proposed in his PhD thesis [Hodas 1994b, Chapter 8]
an intuitionistic linear logic system, called Omnibus Logic, containing only one subexponential index
for affine, relevant, and unbounded formulas?. These indexes were implicit in the logic by the presence
of different contexts, as in our polyadic system, in the left-hand-side of sequents: ©,;0,;0,;T —
C. Here, ©, is a multiset of unbounded formulas; O, is a multiset of relevant formulas; ©, is
a multiset of affine formulas; and I' a multiset of bounded formulas. Hodas also used different
implications for each type of formula: the usual intuitionistic implication D, the affine implication
2., the relevant implication —, and the linear implication —. The translation of the non-linear
implications to linear logic is done as in Girard’s translation (see end of Section 2.4), but by using the
corresponding subexponential bang for each type of implication. Hodas assumed no relation between
the subexponential indexes, so for example, the rule introducing an affine implication on the left was
of the form:

Ou; 0L — P 0,6,;0%T,Q — C
0,;0,;0L,02:1,P%Q —C

=]

Notice that, as in our polyadic system, the formulas in the unbounded context are contracted, while
the formulas in the affine context are split among the branches.

The treatment of unbounded, affine and bounded formulas in Hodas’ system is close to the treat-
ment in our polyadic system. However, when it comes to the relevant formulas, Hodas uses the
following unsound rule, with respect to SELL, for dereliction of relevant formulas:

equ;(_)rv@a;raF_)C
®u;®T3F7®a;F—)C

[absg]

The problem occurs when we use this rule in combination with the affine bang rule, implicit in the
implication left introduction rule above. The contraction of the relevant formula F', which, in Hodas’s
system, is performed in the unbounded context, is done in SELL in the relevant context. Moreover,
since the subexponential indexes are unrelated, when introducing an affine bang, one must be sure
that the relevant context is empty, which is not necessarily true with the use of the absg rule above,

2The fragment of this system, without the relevant subexponential, was also used by Chaudhuri in his PhD thesis
[Chaudhuri 2006, Chapter 3].
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as illustrates the following “proof” in Hodas’ system:

F;xP,P;PQP % D—D
F;P,P,P®P % D;-— D
F;xP,PRP % D;y(P5D)—C—C
F,,,D——>D[I] F:sPP®P%D;-—C
F,wPPP%D;C%D—D
F;wPC%DP®P%D;-— D
m[ﬂ F,C%DPoP%D;-—P%D
F;wC%DPoP%D;(P%D)—-C—C
s(PLD)—-C;C LD PP D;-—C

[absa]

[abs]

[* 2]

[abs ]
[=4]

[~

[absg]

where ' = (P % C) — C. Notice that the introduction of the left affine implication in % is not
sound, because in fact the contraction of the formula F', done in the rule abs;, would have to occur
before x (seeing bottom-up) and, therefore, the relevant context would not be empty.

Finally, Chaudhuri in [Chaudhuri 2009] showed that the propositional multiplicative fragment of
SELL with three subexponentials (two bounded and one unbounded) can encode the transitions of
the two-register Minsky machine [Minsky 1961], which is Turing complete, showing, hence, that this
fragment of SELL is undecidable.

5.5 Conclusions and future works

In this chapter, we discussed the linear logic system, SELL proposed by Danos et al. [Danos 1993],
containing subexponentials, and then we proposed focusing systems for SELL. First, we considered the
case where relevant formulas are not permitted, proposing a straightforward extension to Andreoli’s
LLF system, called SELLF. Later, we investigated the general case and we proposed two complete
focused systems for SELL: the first one where the structural rules are implicit in the logical rules
and the second one where contractions of relevant formulas appear in a third focusing phase between
asynchronous and synchronous phases. Finally, we proposed the system SELL™, an extension of
linear logic, where the subexponential signature is not assumed to be global but local in the sequents
and that contains two new connectives, U and M, that can instantiate or extend such signatures. We
showed that the cut-elimination theorem holds in SELL™ and later we proposed a complete focused
version of this system called SELLF™.
We now point out some possible directions for future work.

e Liang & Miller in [Liang 2009] proposed the focused system LKU where linear, classical, and
intuitionistic logics coexist in a unified system. Similarly to LU [Girard 1991], one can access
these logics by assigning polarities to the connectives and atoms of formulas: for example, linear
logic is captured if all connectives are assigned +/- 1 polarity, while classical logic is captured
if all connectives are assigned +/- 2 polarity. These two levels of polarities are quite natural, as
Liang & Miller used Andreoli’s LLF focused system for linear logic to develop LKU. However, as
already forecasted by Girard [Girard 1991], there can be infinitely many polarities. A direction
for future work could be to use, say SELLF, to construct a unified focused proof system where
such a range of polarity assignments exists. There are several design choices to consider:

One could consider the design used by Liang & Miller [Liang 2009], where the polarity of
the formulas would specify in which “context” positive formulas are moved to, while negative
formulas are decomposed in the asynchronous phase. They also consider specialized systems
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that links the polarity assignment for literals to the context where they belong: for example,
a sequent that focuses on a +2 polarity literal, A, must be the conclusion of an instance of
the initial rule where the matching literal, AL, appears in the classical context. These type
of systems have great appeal, as often in the computation-as-proof-search paradigm, one needs
the following assumption for the specification of algorithms using focused proof systems (see
Chapter 7 or [Simmons 2009]): the set of predicate names are divided into disjoint subsets
where each subset contains the name of predicates allowed in a particular context of polyadic
sequents. This assumption allows one to use the focusing initial rule and guarantee that the
literal consumed belongs to a particular context. A possible way to express such assumption in
the logic could be to link polarities to locations of literals.

On the other hand, as the equivalence ¥ A —o 1°A is provable in SELL, where the subexponen-
tials i,k € Z and ¢ < k, one could choose the design closer to LU where contexts can contain
any type of formulas and they can move from a context with a higher index to a context with
a lower index.

Although proof theory forecasts focused proof systems with relevant formulas, we have failed to
find good computer science related examples that require such formulas. Such examples could
help us decide which is the better design for a focused proof system of SELL containing relevant
formulas. Here we have identified two such systems, one where the contraction of relevant
formulas are implicit in the logical rules, and another where these contractions are isolated in
a third focusing phase between asynchronous and synchronous phases.

Here we have considered the case where subexponentials have only two degrees of structural
rules, namely one for contraction and another for weakening. A direction for future work could
be to extend SELL to contain subexponentials that do not allow exchange rules, and hence
encode logics such as ordered logics [Polakow 2001].



CHAPTER 6
Focusing in linear meta logic with
subexponentials

In this chapter we explore the increase of expressiveness obtained by using linear logic with subex-
ponentials as a meta-logic. We show that a wide range of proof systems can be encoded in SELLF
by using subexponentials to incorporate the structural restrictions of several proof systems for min-
imal, intuitionistic and classical logic, in a similar way as we did in Chapter 4, achieving always
the strongest level of adequacy: full completeness of derivations. We encode Gentzen’s G1 system,
Maehara’s multiconclusion system for intuitionistic logic and several focused proof systems, such as
Herbelin’s LJQ* system and Liang & Miller’s LJF for intuitionistic logic and LKF for classical logic.

6.1 Introduction

When designing a proof system, the structural restrictions imposed to its sequents, usually through
structural rules, play a role as important as the logical rules. Already in the first sequent calculus
systems designed by Gentzen [Gentzen 1969], the system for intuitionistic logic differed from the
system for classical logic by restricting in former system the right-hand-side of sequents to at most
one formula. Since then, several other proof systems have been proposed, which differ more on these
structural restrictions than on their logical rules. For example, Maehara [Maehara 1954] proposed
the sequent calculus system for intuitionistic logic mLJ, where the right-hand-side of sequents are
allowed to contain more than one formula, while the premise of the implication and of the universal
quantifier introduction right rules is restricted to contain only one formula on its right-hand-side.

In Chapter 4, we used the focused linear logic system LLF to encode proof systems. There the
structural restrictions of proof systems were captured by the use of exponentials. When trying to
encode other proof system, however, we quickly stumble on the limitations of these exponentials. For
example, it does not seem possible to encode sequent calculus systems, called G1I in [Troelstra 1996],
that restrict the contexts on the left and on the right of the turnstyle to be multisets and contain
explicit structural rules for contraction and weakening. This is because linear logic without subex-
ponentials provides only one linear context, while we would need two linear contexts to encode such
systems: one to store the object-logic formulas on the right-hand-side of the turnstyle and another to
store the object-logic formulas on the left-hand-side. For similar reasons we are not able to encode
focused systems that contain not only the contexts for the left and the right-hand-side of the sequent,
but also a context, called stoup, for the formula that is focused on.

In this chapter, we use the system SELLF, presented in Chapter 5, to encode sequent calculus
systems. We show that, additionally to the systems encoded in Chapter 4, we can encode a wide range
of more complicated proof systems with the adequacy of full derivations (see Subsection 4.2.2). After
some preliminary considerations, we start by proposing theories that encode the sequent calculus
systems G1 for minimal, intuitionistic and classical logics [Troelstra 1996], where the structural rules
for contraction and weakening are explicit. In Section 6.4, we describe a theory that encodes the
multi-conclusion system for intuitionistic logic, mL.J, proposed by Maehara [Maehara 1954], which,
differently from Gentzen’s intuitionistic system, allows the right-hand-side of sequents to contain more
than one formula. Next in Section 6.5, we propose a theory for LJQ*, a focused system based on
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mLJ and designed by Herbelin [Herbelin 1995, page 78] also appearing in [Dyckhoff 2006]. Then in
Sections 6.6 and 6.7, we encode the focused sequent calculus systems LKF and LJF, for classical and
intuitionistic logics, proposed by Liang & Miller in [Liang 2008, Liang 2007]. Finally, in the last two
sections we discuss how to encode other focused proof systems and point out directions for future
work.

6.2 Preliminaries

As in Chapter 4, we propose theories that use, instead of exponentials, subexponentials in such a
way that the set of (open) derivations in SELLF obtained from these theories are in one to one
correspondence with the set of (open) derivations of the encoded proof systems. These linear logic
theories will, as in Chapter 4, contain two meta-level atoms, |-| and [-], denoting the two senses
of formulas in sequent calculus, that is, formulas on the left and right-hand-side of sequents (see
Subsection 4.2.1).

To store these theories in sequents, we assume throughout this chapter the existence of a maximal
subexponential, denoted by oo, that is greater than all other subexponentials used. Moreover, to better
illustrate the dynamics of formulas in SELLF proofs, we explicitly show the formulas in the images
of the functions in their polyadic sequents. For example, assume that the set of subexponentials is
{z1,...,2n,}, then the following sequent:

FOx1O01x2-- 500, :T (L

denotes the SELLF sequent - K : T {} L, where K[| = © and K[zi] = ©;. Moreover, we use the
judgment Fgpr to denote provability in SELLF.

In Sections 6.6 and 6.7, where we encode the focused systems LKF and LJF, we will need a proof
theoretic notion for fixed points, similar to the one introduced in Section 3.8, called definitions. They
will be used to specify the polarity of object-logic formulas. A definition is a finite set of clauses

which are written as VZ[pZ £ BJ: here p is a predicate and every free variable of B (the body of the

clause) is contained in the list Z. The symbol 2 isnot a logical connective but is used to indicate a
definitional clause. We consider that every defined predicate occurs at the head of exactly one clause.
The following two “unfolding” rules are added to SELLF.

FK:T| Bf FK:T1{ L,Bo

T ipr Y Torgnpr e

The proviso for both of these rules is: VZ[p Z = B] is a definition clause and 6 is the substitution that
maps the variables Z to the terms ¢, respectively. Thus, in either phase of focusing, if a defined atom
is encountered, it is simply replaced by its definition and the proof search phase does not change.

Notice that one could use, instead of definitions, the p operator and the right introduction rule
for equality shown in Section 3.8. However, we prefer the simpler presentation, as, in fact, definitions
are not in the spot light of this chapter, but they are just used as a simple proof theoretic tool to
illustrate the encodings of proof systems via subexponentials.

6.3 G1l{mic}

We now encode the sequent calculus systems G1m, for minimal logic, G1i, for intuitionistic logic,
and Glc, for classical logic [Troelstra 1996], which contain explicit structural rules for contraction
and weakening and multiplicative logical rules'. The system Glc is depicted in Figure 6.1, and we

! These systems are called G1 with contest-independent rules in [Troelstra 1996, Remark 3.1.5].
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I'MHAL,A Ty, BFE Ay [
Fl,FQ,A:>B|—A17A2

= L]

IAFA,B

TFaasg = A

R i? 1wl I P
Faara B Ty B
% (W] % [Wg]
Sara ol ira (o
. Frilfi 221 A ; B2 (o oy

Figure 6.1: The sequent calculus system G1c for classical logic. Here, I'1, ', A1 and Ay are multisets
of formulas; in the rules 3L and VR, the eigenvariable ¢ does not appear free in I' nor A; and ¢ € {1, 2}.

denote provability in this system by the judgment F,;.. From Glc we derive G1i by restricting the
right-hand-side of sequents to at most one formula and replacing the introduction rules for implication

by the following rules:
A I',,B-C

R T,AF B
I1,[5,ADBFC =]

TFass -l

While the system G1m is the system GI1i without the rule L. We use the judgments g and Fgq;
to denote provability in GIm and G1i, respectively.

To encode these systems, we use the following theories L1, Lg1i and L1 obtained from the theory
L, in Figure 6.2, the formulas (D), (Dg) and Id; in Figure 6.3, and the identity and structural rules
in Figure 6.4:

Eglm = ([-:gl U {Idlvld/27 WL7 CL, (DL)7 (DR)}) \ {(:>L)7 (:>R)a (J-L)}
Loii = Lgim U{Wg, (L)}
»Cglc = »Cgl U {Idla Id2a CL, CR; WL; WR}

These theories use two unrelated and bounded subexponentials, [ and r, where |-| and [-] meta-level
atoms are going to be placed. The theory Lgim, for G1m, does not contain structural rules for [-]
meta-level atoms and does not contain the formula (L), while the theory L,q;, for G1i, contains the
formula Wg that allows to consume [-] formulas and the formula (Lz). Finally, the theory Lgic,
for G1c, contains all structural rules. Moreover, the formulas (D) and Id, in the theories Lz, and
Lg1; have some occurrences of ', which are necessary to enforce that the right-hand-side of sequents
contain at most one formula. For each one of these theories, we obtain the strongest level of adequacy
by assigning negative polarity to all meta-level atoms.
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(=) [A=B]*e([Ale?”|B]) (==r) [A= B]*® ('[A]»?[B)])
(AL) [AABJt @ (?'|A] &7 |B]) (Ar) [AAB]*t @ (7"[A]l®?"[B])
(Vo) [AV BJ ® (?'|A] ® ?'|B]) (Vr) [AVBlt®(?[A]® 7 [B])
(vy) |VB]t® ?l | Bz | (Vr) [VB]* ®Va?"[Bz]

(3L) LEIB |+ ® Vva?'| Bz| (3g) [3B]* @ 7" [Bx]

(Lp) L)+

Figure 6.2: The theory, L4, for the G1 systems.

(OL) [ADBl*@ (" [Ale@?|B]) (Dr) [ADB]*®(?|A4] % ?[B])
(Id,) 7| B|®!"?"[B]

Figure 6.3: Formulas for encoding the minimal and intuitionistic systems of G1.

(Idy) |B]*®[B]* (Id;) ?'|B] @ ?"[B] (Wg) [B]* @ L
(Cr) [BJ*e(?[B]®?(B]) (Cr) [B1*@("[B]®?[B]) (W) |BJ*el

Figure 6.4: Identity rules (cut and initial) and the structural rules (weakening and contraction).

Proposition 6.1 Let all meta-level atoms, [-] and |-|, be assigned negative polarity, let TUAU{C}
be a set of object logic formulas, and let the subexponentials, | and r, be specified by the signature

({oo, 1,7} {l X 00,7 = o} {oo}; {oo}). Then
1. Feettt Laim 1|T] 5 [C -1 iff T Fgim C;
2. Feer Lgii 1|T]# [C - iff T b i O
3. et Laie 1| T] 5 [AT -t iff T Fare A

Proof We only show the case for minimal logic, as the other cases follow the same reasoning. We
prove both directions by induction on the height of proofs. The base cases are when the proof ends
with an instance of the initial rule or the 1 rule. We only show the former case:

e Initial Rule:

- 1] — — 1]
F Lo |A] i -2 [A] FLgim -5 [A] - [A] o]
FﬁgzmILAJJ 14 (Al e [A]"
— : - [Doo, T
AF A o~ F Lgim i |A] 5 TA] -1
e Cut Rule:
I FA Ty AFC
Lo o
F Lgim 1 |Ta, A+ [C] 2 1 F Lgim 1 |T1) # [A] - 4

[, 7]

— T [RL7] — ;
F Lgim 1 T2 i [C]:- U7 A] F Lgim 1 [T1] i -:- P17 A]

b Lgtm 1 [T1,T2) # [C] - 4 7| A] @177 A]
F Lotm 1 |T1,T2) £ [C -1
Notice that, because of the presence of the I-bang in Id}, the atom [C] must move to the left branch.

]

[Doo, 3]
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e Structural Rules: The cases for the structural rules are straightforward and we do not show
them here.

L] /\Lli

T,AFC

rasrprc Ml

F Ll |D,AF[C] -1
b Lgii|T]i-:[CT 47 A]

[RU,7']

~ Lol [ANBIG Y IANBIE  FLuii[D)F[C) -4 7A@ 7 B) Elﬂ
'_Egl"}LF’A/\BJ”Cw:'ULA/\BJLG@(?ZLAJ@?ZLBJ)
[Doo, 2 x 3]

F Lgi i [T, AANB] i[O -4

The case for the rule ALy is similar to the derivation above for ALjp, but, instead of using an
instance of @; rule, we use an instance of @, rule.

o A\R:
A IyFB
T o,-anp M
b Lgii |Th) i [A] -4 b Lgii|T2) i [B]:- 1
Ty AL Ul gl; 1. [RY, 7] gl: 2. [RY, 7]
}_E»U,[A/\B] }—[,gljltfljf-:-ll?T[A] FﬁglleFQJi-l'U?r[B—‘

: 4 2 x ®]
F Ly |T1,To) i [AANB]:- 4 [AANB]* @ (77[A]l @ 7"[B])

b L1 |T1,T2) i[AANB] -4

[Doo, 2 x I

where X is the set of formulas Lg;1-i [AA B] : -
The cases for the disjunction left and right introduction rules are similar to the cases for the
conjunction introduction rules shown above.

e DO R:
I'A-B
rrasg 21
F Lgii [T, Al [B]:- 1
: ) [, 7]
F L) i 7' A), 7 [B]

, : : l . (R}, 9]
}_ﬁghlrfADB—lxu«[ADBwL l_ﬁghILFJrll?LAJ’?r?[B—l [®]
FLgii|T|i[ADB]: I [AD Bt @ (?|A] ® ?"[B])

[Doo,2 x ]

FLgii|T]i[ADB]: 1

oD L:

TiFA TIy,BFC
T1,I15,A>BFC

[> L]
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F Lo Ta) £ TA]: - F Loi (T3, B £ [C] 1
rra— : : [, 7] ; : [RY, 7]
FXU[AD B b L1 [T1] i Y127[A] b Ly 1 |T2) i [C]:- 47| B] 2% @]
; X &

F Lyl |T1,T2,ADB|i[C]:- | |[ADB|*®(7[A] @ 7| B]) D2
; ooy 4 X
FLgi1|T1,T2,ADB|i[C]: 1
where ¥ is the set of formulas Ly;; 1 |A D BJ i-:- Again, because of the presence of the

subexponential bang in the formula (Dy ), the formula [C] must go to right-most branch, obtaining,
hence, stronger levels of adequacy for the encodings of intuitionistic and minimal logic, i.e., full
completeness of derivations.

Finally, the cases for the quantifiers are straightforward. Here we show only the cases for the right
universal and existential quantifiers introduction.

o VR:
- £'gh- 1|T)i[Be] - .7
F Lgpi i [T) i+ A Va? [ Ba] R
F Lgpi i VB oY [VB1:  F Ly |D) i U Va? [Ba) ol
reBle F Lai i |T) Wg] .|} [VB]* ® Va?" [Bx] D
[+VaeB o F Lgi i |T)  VB] -1

Notice that the variable x is instantiated in the meta-logic derivation as an eigenvariable, similarly
as in the object logic rule.

e JR:
- Ly 1T i [Bt] :-
— (1] :Iu [Bel: 1 (R, 77
b Lgi1-#[3B] - | [3B]+ b Ly 1|T)d-:- 4 7 [Bt] -
I+ B{t/x} ) F Ll [I'] ¢ EBW -4 [3B] @ 7[Bt] D2 x 3]
'3z B s F Lgii [T+ [3B]:-

6.4 Multi-conclusion Proof System for Intuitionistic Logic

The system mLJ, depicted in Figure 6.5, is a proof system for intuitionistic logic, proposed by Maehara
[Maehara 1954], that, differently from the Gentzen system shown before, allows the right-hand-side
of sequents to have more than one formula. We use here the additive version of this system, where
the context are shared, and denote provability in this system by the judgment tp,;;. The theory L
in Figure 6.6 encodes mLJ and uses two unrelated and unbounded subexponentials, [ and r, where
the |-] and [-] atoms are stored. We obtain the adequacy on the level of derivations by assigning
negative polarity to all meta-level atoms, as states the following proposition.

Proposition 6.2 Let all meta-level atoms, [-] and |-], be assigned negative polarity, let T U A be
a set of object logic formulas, and let the subexponentials, | and r, be specified by the signature
({oo, 1,7} {l X 00,7 = 0o} {oo, I, 7} {oc, I, 7}). Then

Fsettt Logj 1|T) F [AT 0 0 iff T by A
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T ASBFAA T.A>B.BFA T Al B
T.ASBFA Pl reas5a P

LAABABEA  TEAABAA TEAABBA
[LAANBF A A TFAAB,A [Ar]

IAVBAFA TAVBBFA  THAVBABA
[LAVBFA [vil I'FAVB,A [v+]

I\Wx A, A{t/z} F A '+ A{c/z}
[VzAF A [vi] LFAVrA [vr]

I3z A, A{e/x} E A FFA Gz A A{t/z}

[L3rAF A &l TFA3zA 5]
I'FBA T,BFA
rArAA ! FFA (Cutl w A

Figure 6.5: The multi-conclusion intuitionistic sequent calculus, mLJ, with additive rules.

(o) [ADBIt @ (T[A1&"A]) (D) [ADBlte!'(?'|A] % ?7[B])
(M) [AAB]E@(? ZLAJ 2 ?|B]) (A) [AAB]*® (7"[A] & ?7[B))
(Vi) [AVB]*® (M A]&?[B]) (v;) [AvB]*@ (?"[A]% 7 [B])
(Vy) |VB]* ®?'|Bz] (V) [VB]* ®"Vz?"[Bx]

(3,) |3B J ® Vz?'| Bx| (3r) [3B]* ® ?"[Bzx]

(Lp) [L]*

(Idy) [BJ* @ [B]* (Id) 7'|B|®?[B]

Figure 6.6: The theory, £, for the multi-conclusion intuitionistic logic system mL.J.
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Proof For both direction, we prove by induction on the height of proofs.
One of the base cases is when a proof finishes with an initial rule:

e Initial Rule:

rar ana U

— — 1] — — (1]
F Ll [T, A [AA] - U [A] F Lyl [T, A] 7 [AA] - [A] |

F Loy 1 [T A F[AA] -4 A @ [A]L
b Loy 1|, AL F[AA] - A
Since all |-] and [-] are assigned negative polarity, it must be case that both atoms | A| and [A] are

present in the context whenever one focuses on the Id; clause.
The other base case is when the proof ends with 1,

[Doe, 3]

(] Ll:

1]

b Loyt [T, L] # [A]:- 4| L]*E De]

nira M LA

We only show the interesting inductive cases, as most of them follow the same reasoning as in the
proof of Proposition 6.1. We start with the case for the right implication introduction rule:

e D,:
IAFB
rFAsBA

F Lo [T,A] i [B]:- 1
b Ly [T i1 2 A] ® ?"[B]
X [ADB]* 1] F L1 D) i [AAD B - L 1?7 A] 7 [B])

F L1 [T i [A,AD B]:- | [AD Bl (%U|A] ® ?,.[B))

F L1 [T i [A,AD B : -4

where X is the set of formulas £y i || i[A,AD B]:- The role of the subexponential bang in

the clause (D) is crucial for the correct encoding of the object-logic rule, as it enforces that the [-]

formulas in the context to be weakened before the atoms | A] and [B] are moved to the context.
Another interesting case is the universal quantifier right introduction rule:

(2,7, 7]

1]

[®]
[Doo,2 x ]

o V,:

'+ A{c/z}
I'-AVzA [¥r]

b Lo [T 5 [Ac] 2 -4
F Lo i D] i A Va? [Ax)
Loy 1 (D] F[A V2 AT ;- 4 [Va AT o Loy 1 [T 5 [A V2 A+ - § V27" [ Ax]
F Loy 1 [T] [A V2 A] 2 - | [VB]* ® V27" [ Bz
b Loy 1|T) i [AVZA] -

v, 7"

1]
[®]

[Doo, 3]
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IA>B— A T,A>B,BFA rAHa
TLA>BFA =i —A5B.A 7
ILAVBAFA T.AVBBFA NABA
[LAVBFA Vil AvBA[ r]
I AANB,A,BFA A I'—AA T — BA A
[LAANBFA Al I - AAB; A [Ar]
r—-c;A

rasaasll Trea Pl pora

Figure 6.7: The focused multi-conclusion system for intuitionistic logic - LJQ*.

(Id,) [A]*- @ [A]+ (Lr) [L]*

(1) |ADB]te (" [Al " B]) (or) [AD Bt (?'|A4] » ?"[B))
(Vi) [AVBJte(?AleV"?"|B]) (Vr) [AVBlt&!"(?[A]® ?[B))
(AL) [AABJF@U'(M[A]»?(B]) (Ar) [AABlre(T[A]1@!"[B])

Figure 6.8: The theory L, used to encode the system LJQ*.

As in the previous case, the role of the subexponential bang is to weaken all the [-] formulas in the
context before the formula [Ac] is moved to the context. O

6.5 A focused multi-conclusion system for Intuitionistic Logic

In the next sections, we move our attention to focused systems. We start with the focused multi-
conclusion system for intuitionistic logic LJQ*, depicted in Figure 6.7, which is a variant of the
system proposed by Herbelin [Herbelin 1995, page 78] and was used by Dyckhoff & Lengrand in
[Dyckhoff 2006]. LJQ* has two types of sequents: unfocused sequents of the form I' - A and focused
sequents of the form I' — A; A where the formula A, in the stoup, is focused on. We use the judgment
I’ Fjjq A to denote that the sequent I' = A is provable in LJQ* and the judgment I' — 4 A; A to
denote that the sequent I' — A; A is provable in LJQ*. As is usual in focused systems, the stoup,
together with the decide rule D, restricts the proofs available by imposing some focusing discipline
to proofs. Here proofs are restricted as follows: the logical right introduction rules introduce only
focused sequents, while the left introduction rules introduce only unfocused sequents.

The theory depicted in Figure 6.8 uses three subexponentials: [, used to encode the left-hand-side
of object-logic sequents; 7, used to encode the right-hand-side of object-logic sequents; and f, used to
encode the stoup of object-logic focused sequents. As it will become clear in the proof of Proposition
6.3, the restrictions to sequents imposed by the focusing discipline, via the decide rule, are encoded
implicitly by the use of the subexponentials. Therefore, the clauses encoding the inference rules that
introduce focused sequents will specify two object logic derivations: one derivation is the object-logic
inference rule whose conclusion is a focused sequent, and the other derivation is the object-logic
derivation composed of a decide rule and the corresponding object-logic inference rule.

Proposition 6.3 Let all meta-level atoms, [-] and ||, be assigned negative polarity, let TUAU{C}

be a set of object logic formulas, and let the subexponentials I, and f, be specified by the signature
<{f7 l7 T, OO}{f j r j l j OO}; {l7 T, oo}; {l7 T, oo}> Then

1. Faenr Lyjg 1| D)3 [ATF 2 iff T hyg A
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2. Feer Lijg 1 [T # [A] £ [C] - iff T =g C; A.

Proof We prove both directions by induction on the height of proofs. The base case is when a
proof finishes with an initial rule or a _L; rule:

e Initial Rule:

IA— A A 1 s

Ca I DAL AT b IAE " 2y i DAL A7 [A] - & AL {;f]]

FLyq 1 [T, Al [AT£[A]: ) [A]* @ [A]+
F L1 [T, A i [A] £ [A] 21

[Doo, 3]

As decide rules are incorporated in the theory and not encoded explicitly by clauses in Ljjq, there is
yet another focused derivation that introduces the formula Id; that does not have any formula in the
context of the subexponential f, as illustrates the following derivation:

N
IA— A; A
rAran P
: . . [If] R , ; [Il]
F L1 | T, Al # [A AT -0 § [A]E F L1 T, Al [A AT £ § |A]L ]

F Lijg 1T AL i [AA] £ )

[Dos, 3]

As the subexponential f does not allow weakening, it must be the case that either [A] is in the
context f or it is empty. Thus, satisfying the restrictions on focused proofs that only one formula is
focused on.

The other base case is when the proof ends with a L; rule which is similar to the corresponding
case in Proposition 6.3.

We now proceed to the inductive cases starting with the left implication introduction rule.

® D

NNA>B—A;- TAD>DB,BFA
[LAS>BFA =]

Fﬁzj-q}LF’J f-'-fva] D ] | | |
b Liyg i [T ] i 2 [A] ’ FLjg 1 [T, B] i [ATf -1
FLyg 1| F[AYE - W 1TA] T R Ly i [T E[AYE-: - LB
F Ly [TV i[Ali-:- U |ADB|* @ (" [A]@!"?B))
F Ly [T i[A)F-:- 1

[,

2 x ]

KU [AD Bt L4

[Doo,2 x 3]

where K is the set of formulas Ly, 1 [I”] i [A] and T" is the set of formulas I'U {4 > B}. The role
of the subexponentials bangs, 1" and 1", in the clause (Dr), is crucial to obtain the correspondence
between the meta-logic and object-logic derivations above. The [-bang enforces that the set of atoms,
[A], containing object-logic formulas in the right of the sequent, is weakened in the left open premise,
while the r-bang ensures that there are no focused atoms in the right open premise, that is, the f-
context is empty, and, hence, enforcing the focusing discipline that a formula on the left can be
introduced only if no formula is focused on.
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e D,.: The case for the right implication introduction rule, depicted below, follows a similar line
of reasoning as used in the previous case; we use a [-bang to weaken the formulas in the context of

the subexponential 7.
INA+B

F%ADB;A[DT]
- Lijg 1 [T, A i [B] -1 l l
[Ir] : . : 1/ol . [!7)?7?Ta?]
FX | [AD B+ F Lyq i (D)3 [A] - 12 A] ® 7"[B]) o)
F L1 |T) i [Ali[ADB]:- | [AD Bt e!/(?'|A] » 7"[B]) Do 2
. . oy X
F Lyg 1T i[A]1f[AD B]: ¢
where X is the set of formulas L, 1 [I'| i [A] i [A D B].
o\
IAVB,AFA T,AVB,B+FA
T.AVBFA Vil
b Liyjg i [TV, A i [AT -0 - F Ly i [T, B|i[A]F-:-f -
FKUAV Bt - F Ly i [T7]F[ATF- - Q77| A] . F Ly i [T7]F[AT 7 17?7 B) {'27.@]@]
: . : .. 1 rol rol x
FLjg1 [T i[A]lf-:-J[AVB|-(I"?"|A] "7 | B]) (D2 x 7

F Ly i [T F[AT -4

where K is the set of formulas Ly, 1 |[T”] i [A] and T" is the set of object-logic formulas T'U {A Vv
B}. Here, we again use r-bangs in the clause (V) to ensure that there are no formulas in the f
subexponential context, and, therefore, it is not the case that we conclude a meta-logic sequent that
encodes a focused object-logic sequent.

oV,
I'HABA y
- AvB;A [v7]

F Lig 1 [T i [A A Bl -4
[If] : . : [!T,?,Z X ?]
Y [AVB]* F L1 [T i [A]-:- 4 I"(7"[A] %2 ?"[B]) .
FLyq 1 |T] i [Alt[AAB]:-J [AVB]-@!"(?"[A] » 7"[B])
[Doo, 2 x I

- L1 D) i [Alf[AVB]: -1

where ¥ is the set of formulas Ly, 1 |[T'| # [A] # [AV B]. As before, we use the r-bang to ensure that
the formula in the f-context is consumed in the left branch.

o /\;:

LANBABEA
[LAANBFA Al

F Lijg 1 [T, A, B i [A] -0 -4
FK U |AABJE L4l F Lijg 1| i [ATF-:- LAl 2 7 B))
F L1 [T/ i [A]7-:- U |[AAB]L@!"(?'A] 2 7| B))
F Lo 1 [T F [AT 7

2,2 x 7

"
[]
[Doo,2 x ]
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NENAR —[0],P - [O], N
Tene 0 e P e
- [e],T
— [0, AL], A, = ], Ll [©],T, L+ Lz [©],T,tt 2]
F[e.,T,A F[e,I,B -[e.T,AB
reran s M Ferravs V)
— [0], B{t/x} g " [©],T, B{c/z} M
— [0], 2B - [6],T,vVzB
= [6]7A = [@]73 [/\+] = [9]7Az [\/+]

— [6],AANT B — [0], A1 VT A
Figure 6.9: The rules for LKF. Here, A, is a positive literal, P is a positive formula, IV is a negative
formula, P, is a positive formula or a literal, © is a multiset of positive formulas or literals, I" is a
multiset of formulas, and in the rule V, ¢ does not appear free in © nor in I'.

where K is the set of formulas Ly, 1 |T'] i [A] and TV = TU{AA B}. Once again the r-bang enforces
that the context for the subexponential f is empty, which corresponds to the focusing discipline that
a formula on the left is introduced only if no formula is focused on.

o N,
r—-AA T'—- BA
I' - AANB; A [Ar] o
F Lygi D] i[A]F[A]:- 1 F L1 |T]i[ATF[B]:-1
e rre— 0 . ; [, 7] N ; [, 7]
FSUJAAB]* b Lyg 1 [T i [A]F-:-J "2 [A] FLygi [T i[A]F-:- 41" [B]

: ) : (2 x ®]
F L1 |T]i[AT([AAB]:-L[AABIt @ (" [A] @ "2/ [B))

F Ly 1|0 i[A]+[AAB]: -1

[Doo,2 x ]

where ¥ is the set of formulas Ly, 1 [T'| # [A] t [A A B]. The use of the r-bangs has the same
motivation as in the clause (Vg), namely to ensure that there is at most one formula in the f-context.
a

6.6 LKF

Liang & Miller proposed in [Liang 2008, Liang 2007] the system LKF for classical logic whose fragment
is depicted in Figure 6.9, which is similar to the focused system LJF for intuitionistic logic that we
described in Chapter 3. Asin LJF, we assign arbitrarily the polarity for literals and classify as positive
the formulas whose main connective is either AT, VT, 3 or ¢ and the positive literals. The remaining
formulas are classified as negative. This classification is specified by the definitions pos, syn, asyn, lit,
and litSyn depicted in Figure 6.11. Moreover, literals are specified by using the terms lit? and Iit",
whose superscripts denote the polarity of a literal: p for positive polarity literals and n for negative
polarity literals. We restrict ourselves to the fragment without implications to avoid computing the
negation normal form of object-logic formulas.

The system LKF has three types of sequents: — [O], P is the sequent focused on the formula
P; F [©], A is the unfocused sequent; - [O] is the sequent that does not contain any asynchronous
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(AT) [AAT B]* ® (str® A® str® B) (A7) [AA™ Bt @ (strg AB)
(VF) [A; vF Al ® (str® Ay @ str® As) (V7)) [AV™ B]* @ (stry AB)
3 [AB]+ ® (str® Bx) (V) [VB]+ ® (str® B)
(th) Tt]teT (t2)  [tH]t oL
(L) [LHteT (Idy) [lit? A1+ @ [1it" AL+
Figure 6.10: The theory Lyr used to encode LKF.
syn A 2 JA1A5(A = Ay At Ay) @TA1Ay(A= A vt Ay) @ IB(A=3B) & (A=1)
asyn A é E|A1A2(A = A1 N~ Ag) D E|A1A2(A = A1 VT AQ) (&) ElB(A = VB) S¥) (A = J_)
lit A 2 JA[(A=lit" A)) @ (A =it Ay))
litSyn A 2 3A[(lit Ar) B (syn Ay)]
pos A 2 A [(A =Lt A) @ (syn Ar)]
str AB 2 [(litSyn A) ® (litSyn B) ® (?°[A] e ?*[B])] @
[(litSyn A) ® (asyn B) ® (7°[A] e [B])]®
[(asyn A) @ (litSyn B) ® ([A] & 7°[B])] &
[(asyn A) ® (asyn B) @ ([A] e [B])]
stre A 2 3B(A = \zB) @ {[litSyn B ® (Va?*[Az])] & [asyn B ® (Va[Ax])]}
str® A 2 [(pos A)® (1P P [A])] @ [(asyn A) @ (P[A])] @ [FAL(A = 1it" Ay) @ (1P7°[A])]

Figure 6.11: Set of auxiliary definitions encoding the structural focusing rules in LKF. Here, the
universal quantifiers around the definitions are elided; and e is either the connective & or g

formulas. We use the judgment Fpr [[],© to denote that the sequent - [I'],© is provable in LKF
and the judgment — ¢ [I'], © to denote that the sequent — [I'], © is provable in LKF. The structural
rules D, R and [] enforce the following focusing discipline on LKF proofs: in all sequents, O is only
composed of positive formulas and literals; a positive formula is introduced only when it is focused on
and when there are only positive formulas or literals in the context; and negative non-literal formulas
are introduced only when there is no formula focused on.

The theory L in Figure 6.10 encodes the system LKF by using two unrelated subexponentials:
s which is unbounded and is used to encode the bracketed context of LKF’s sequents; and f which
is bounded and is used to encode the stoup of LKF’s focused sequents. The structural rules D, R
and [] are encoded implicitly by the use of the subexponentials s and f. The correct placement of
these subexponentials depend on the type of the object-logic formulas involved in the clauses, which
is specified by the set of definitions strg, strg, str®, and str® The definitions strg,, strg, and str®
are used in the encodings of asynchronous rules and specify that positive subformulas and literals are
moved to the s-context. On the other hand, the definitions str®are used in the encoding of synchronous
rules and specify that positive subformulas and positive literals are moved to the f-context and that
negative literals are moved to the s-context. Notice, however, that we use these definitions just to
give a better presentation for the theory L. One could alternatively present another theory, where
these definitions are not necessary and that contains a clause for each possible combination of the
principal formula’s subformulas. For example, this theory would contain the following clause,

JA1 A B By[[(AL AT By) AT (A3 VT By) |t @ (12 [AL AT By @ 15[ A3 V™ Byl)],
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which is obtained by replacing in the clause (AT) the atoms str® A; AT By and str® Ay V™ By by a
simplification of the body of their definitions.

Strictly, we do not encode all LKF proofs but the LKF proofs that apply eagerly the structural
focusing rules: [], R, and D. One could construct a variant of LKF that incorporates these structural
rules into its logical rules. For example, instead of the A~ rule in LKF, this system would contain
different variants for this rule according to the type of subformulas of the introduced conjunction:

F[@,P;],F F[@]ar;Bl AT F[@aljal]vl_‘ F[671:)(5]7F AT
F[O],T, P} A~ B Nl - [©],T, P} A~ P2 =)
+[e],T,B; +[O©,P1,T - F[e],T,B; +[6],T,Bs -
F1[6],T,B; A~ P} sl - [0],T,B1 A~ By hal
"[@7P;] l_[e)]?Bl _ I—[@’Pal] F[G?Pu?] _
e [As5] =2 N6l
H[@]aPa/\ By H[G]vpa/\ Pa
F[@]aBl l—[@7Pal] — l_[e]vBl }_[6]’32 _
[A7] [As]

'—’[@],Bl AT Pal H[@],Bl AT 32

where P! and P? are positive or literal object-logic formulas and B; and By are negative non-literal
object-logic formulas. This explosion on the number of rules also occurred when Girard used his
Unity of Logic system [Girard 1991] to define classical and intuitionistic connectives. As in the rules
above, Girard used an introduction rule for each combination of polarities of the principal formula’s
subformulas.

To obtain an adequacy level of derivations, we assign negative polarity to all meta-level atoms, and
since the structural focusing rules are encoded implicitly in the theory, we assume that the different
contexts (bracketed, unbracketed, and stoup) contain the correct types of formulas.

Proposition 6.4 Let all meta-level atoms be assigned negative polarity. Let T' be a set of positive
object-logic formulas or literals and A be a set of negative non-literal object-logic formulas and C
be a positive object-logic formula. Let the subexponentials, s and f, be specified by the signature

({oo, f, 8} {f =X 00,8 X oo }{s,00}; {8, 0}). Then
1. l—lkf [F],A lﬁ l—seuf ﬁ]kfé |—F—‘ f : |—A—| ﬂ,’
2. =t [T],C iff Feenir Lixe 5 [T] £ [C] = - 1.

Proof We prove both directions by structural induction on the height of proofs. The base case is
when the derivation ends with an instance of the initial rule.

e Initial Rule:

— (0,41, A 1 s

I . Is
b Lo [@,lit" AL] i Hitp AW ) Hjtp A]L [ f] - Lo ’—@,th Aﬂ feo:-y []jtn AL“L {®]]

F L & [0, 1it" ALT £ [1it? A] : - | [lit? A+ @ [lit™ A+]+
F Lo & [©,1it" AL £ [LitP A] - - 4

[Doo, 3]

Similarly as in the encoding of LJQ*, because the object-logic rule D is implicit in the theory, there
is another derivation that introduces the formula Id;, where the context for the subexponential f is
empty. This derivation corresponds to the object-logic derivation composed of the rules D and I. The
other base cases for the rules ¢; and L are similar to the previous case.
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We now proceed with the inductive cases, starting with the negative conjunction introduction
rule.

e A~ : Since the [] rules are implicit in the theory Ly, there are four cases to consider obtained
according to the type of subformulas, A and B, of the introduced conjunction. We consider the case
when A is a negative non-literal object-logic formula and B is a positive object-logic formula. The
other cases are similar.

F[©,B],T

~leLra renrs
F[e,T,AAN" B 7]
“Lwrt (O DA by FhuS[OB TR
b Ly i [©) 1+ [T] 1t [A] F L §[©] £ -2 [T] 4 2°[B] (RU, &

F Lpg §[O] £ -: [T | [A] & 7°[B]
FX | [AA B]* ] F Ly s [©)4-: [T] I strg AB
F Ly s [©)f-: [T, AN B] | [AA~ B+ @ (strg, AB)
F Ly i[O F-: [T, AN B] ft

[®]
[Deo, 2 x ]

where ¥ is the set of formulas Ly 5 [©] 7 - : [A A~ B]. Notice, however, that since the R rules are
also implicit in the theory Lyr, the following derivation can also introduce the formula (A7):

F,c]kf;[@]}-; [A] 1t 1] I—L‘”(fé[@.,B]}-:-ﬂ
L5 [O] 121 [A] Ll s [O]F-:- 4 7°[B]
b Ly [©]f-:- U [A] & ?°[B]
FX | [AA- B+ H FLus s [O) - | stry AB
F Ly s [©) i [AA™ B]:- || [AA~ B+ @ (str{ AB)
Ly s [©] ¢ [AA B]:-f

77

(R, &]

[®]
[Doo, 2 x I

that corresponds to the object-logic derivation composed of the rules R, A~ and [] that introduces
the sequent — [©], AN~ B.

e V7: Again there are four cases obtained according to the type the subformulas, A and B, of the
disjunction introduced. We consider the case when A is a negative non-literal object-logic formula
and B is a positive object-logic formula.

F[©,B],T,A
HCAWN A
Fenrnav-s ]
e s [O] £ [T [A],7°[ B IRY, %]

E L 5 [0] -2 [T 4 [A] ® 2°[B]
FX:[Av- B] | [Av- B]* 1 F L s [©] -0 [T strk AB
F L s [©] 72 [T,AV™ B] | [AV~ B]* @ (str AB)
FLus$[©]f-: [T,AV™ B] 1

[®]
[Doo,2 x ]
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where X is the set of formulas & Lys, [©] - : [A V™ B]. As with the case for negative conjunction
introduction rule, since R rules are encoded implicitly in the theory Ly, there is another derivation
that introduces the formula (V™), which corresponds to the object-logic derivation composed of the
rules R, VvV~ and [], introducing the sequent — [©], AV~ B.

The inductive cases for the other asynchronous rules follow a similar reasoning.

The cases for the synchronous rules are not different from the cases for the asynchronous rules
shown before. We show here only the case for the positive conjunction introduction rule.

e AT: Assume below that A and B are both positive formulas.

~BL4 —[OLB .

— [0, AANT B

FLlus i[O F[A]: -4 F Ly i [©)F[B]:- 1
< [, 2] : 1, 27]
F Ly i[O F-:- L 152/ [A] F Ly i[O F-:- 1527 [B]
k F Ly i[O F-:-str®A F Ly i[©)F-:-|str*B ®]

FYy[AAt B]: 5] b Luc i[O 41+ I str® A@ str® B o)

FLus i[O 7 [AAY B]:- | [AAT B]* @ (str® A® str® B) (De.2 x 3]

Fﬁlkfé[@1}[AA+B] ﬂ

where ¥ is the set of formulas Ly i [©] i [A AT B]. Here the s-bang in the formula (AT) ensures
that there is at most one formula in the context for the subexponential f, which corresponds in the
object-logic that there is at most one formula focused on and that the unbracketed context is empty.
As before, since the D rules are encoded implicitly in the theory L, there is another derivation that
introduces the formula (A™), which corresponds to the object-logic derivation composed of the rules
D and AT. O

6.7 LJF

The focused system LJF for intuitionistic logic, also proposed by Liang & Miller [Liang 2008], is
depicted in Figure 6.12. We assign arbitrarily the polarity for atoms and classify as positive the
formulas whose main connective is either AT, v, 3 or ¢ and the positive polarity atoms. The remaining
formulas are classified as negative. As before, this classification is specified by the first set of definitions
shown in 6.14. Moreover, we encode atoms by using the terms atom® and atom”, whose superscripts
denote the polarities of the object-level atom: p for positive polarity atom and n for negative polarity
atoms. Differently from LKF, the system LJF has two sided sequents, with the restriction that their
right-hand-side contexts have at most one formula, and four types of sequents, described in Section
3.4.

We show that the theory Ljr in Figure 6.7 encodes LJF. It uses three subexponentials: [ is
an unbounded subexponential which, intuitively, encodes the left bracketed context; r is a bounded
subexponential, which encodes the right bracketed context; and f is a bounded subexponential that
encodes the focusing stoup. As before with the encoding of LKF, the structural rules [|;, |, Ri, Ry, Dy
and D, in LJF are implicitly encoded in the theory Ly, by using the defined atoms strél, stre”, str®,
strg, str‘%f, strg’, strg’, and stry to correctly place subexponentials connectives. The definitions
stré! and str®” are used in the encoding of introduction rules appearing in the synchronous phase and
specify that formulas are moved to the f-context and atoms are moved to the [-context or r-context.
On the other hand, the definitions str®, strgf, str%l, strgl’, strg’, and stry are used in the encoding
of introduction rules appearing in the asynchronous phase and specify that formulas and atoms are
moved to the [-context or r-context. As in the encoding of LKF, we do not strictly encode LJF but
a variant of it that incorporates the structural focusing rules into its logical rules.
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[[NN,’FFE = [[iz]] 2] [IE]F];ITI;} (D] [Fgffi [R[1R ind [[Fr]]?iv [B:]
] Ao (A, i T A a1 g’,]éf]}v@z :Z L [gi%:[g] -]
ot —w Ml res g il e
e TR
[F]%R ] .6—4 [1,6—B  [,0,4—B

1] =22 (R ,6 — AA~ B e —ass P

r,0,A—R [],6,B—TR i [[]—4,— i ] 247, [R) ]
,0,AVB —R : T]—a,va— = r] =2 [R]
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Figure 6.12: LJF: Here, I' and O are multisets of formulas, A,, denotes a negative atom, A, a positive
atom, and P a positive formula, N a negative formula, N, a negative formula or an atom, and P, a
positive formula or an atom. All other formulas are arbitrary and y is not free in I'; © or R.

To obtain an adequacy level of derivations, we assume that the different contexts (bracketed,
unbracketed, and stoup) contain the correct types of formulas and assign negative polarity to all
meta-level atoms, as states the following proposition.

Proposition 6.5 Let all meta-level atoms, [-] and ||, be assigned negative polarity. Let T be a set
of negative object-logic formulas or atoms, A be a set of positive non-atomic object-logic formulas,
Cp be a positive object-logic formula, C,, be a negative object-logic formula, P be positive object-logic
formula or an atom, and N be a negative non-atomic object-logic formula. Let the subexponentials,
l,r and f, be specified by the signature ({f,r,l,0c0}H{f < 00,7 <1 < oo}; {l,00};{l,00}). Then

1. [T],A — N is provable in LIF iff Feene Lyje 1|T] 5 -7 -2 [A],[N] 15
2. [T, A — [P] is provable in LIF iff Feenr Lyjr 1|T] # [P -1 [A]
3. [[)—c,— is provable in LIF iff b Lyje 1|T] i+ 7 [Cp] « - 1

4. [T] £ [P] is provable in LIF iff by Ly 1 |T] i [P]#Chl : - 1.

Proof Again the proof follows by structural induction on the height of proofs. The proof follows
the same reasoning as in the proof of Proposition 6.4. In all the inductive cases there are several
cases to be considered, obtained according to the type of subformulas of the principal formula. Here
we show only some cases, starting with the inductive case for the left implication introduction rule.

e D;: Here we assume that A is a positive formula and B is a negative formula. The other cases
are similar.
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(\F) AN BI* @ (strtd A B) () [AATBI* & (st A str™ B)
(A7) [ALAT Ag]t @ (strst Ay @ strt Ay) (A7) AN Blt @ (stry AB)

(Vi) |AVB|*t @ (str¢! AB) (V) [ArV AQ] ® (str’" Ay @ stré” Ay)
(D)  |ADB]t® (str" A® str! B) o) [AD BW ® (stry’ AB)
(3) [3BJ]* ® (str B) (3,) [3B]* ® (str*” Bx)
;) |VB]* ® (str®! Bx) (v.) |vB ] ® (str® B)
(t t]t® L ()  [trelLT
(L) [LleT
(Id) [atomP A]* ® |atomP A]+ (Id}) [atom™ At @ |atom™ A|+
Figure 6.13: The theory Ly used to encode LJF.
syn A 2 JA1A5(A = Ay At Ay) @ FA1Ag(A= A1V A)) @3B(A=3B) @ (A = 1)
asyn A é EIAlAQ(A = A N Ag) D HAlAQ(A =A1D Az) ) HB(A = VB) (&) (A = J_)
atom A £ JA1[(A = atom™ A;) @ (A = atomP Ay)]
atSyn A 2 3A[(atom Ay) @ (syn Ay))
atAsyn A 2 JA;[(atom A1) @ (asyn Aj))
pos A = JA;[(A = atom? Ay) @ (syn Ay)]
neg A £ JA,[(A = atom™ A;) & (asyn A1)]
strdd AB 2 [(atAsyn A) ® (atAsyn B) @ (?'|A]  ?|B)] @
[(atAsyn A) @ (syn B) ® (?'|A] o |B])]®
[(syn A) @ (atAsyn B) @ (|A] o 7| B))] &
[(syn A) @ (syn B) © (|A] o | B])]
strol A 2 3B(A=\zB)® {[atAsyn B® (V2?'| Az])] & [syn B® (Vz|Az])]}
str*l A S [meg A) @ (" [A])] © [(syn A) @ ("[A])] © [BA1(A = atom? A1) @ ("7 A])]
str" AB 2 [(atSyn A) ® (atSyn B) ® (?"[A] & ?"[B])] @
[(atSyn A) ® (asyn B) @ (?"[A] & [B])] &
[(asyn A) @ (atSyn B) @ ([A] & ?"[B])] @
[(asyn A) © (asyn B) © ([A] & [B])]
str AB 2 [(atAsyn A) ® (atSyn B) @ (?|A) » 7" [B])] &
[(atAsyn A) ® (asyn B) ® (?'|A] ® [B])]®
[(syn A) ® (atSyn B) @ ([A] »» ?"[B])]®
[(syn A) @ (asyn B) @ (|A] & [B])]
stré A £ B(A = XzB) ® {[atSyn B® (V2?"[Az])] & [asyn B @ (Vz[Ax])]}
stréT A 2 [(pos A) @ (' 27 TAN)] @ [(asyn A) @ ('[A])] @ [3A41(A = atom™ A1) @ (1?7 [A])]

Figure 6.14: Set of auxiliary definitions encoding the structural focusing rules in LJF. Here, the
universal quantifiers around the definitions are elided; and e is either the connective & or 9.
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[—a— [ —[R]
r] A28 =] —
+—LW}LFJ5.2LM:~n~ 7] l—cwdlrj;[Rj}LBJ:-ﬁ 7]
F Ly 1| D) i-foc- 2/ [A] ] b Ly 1 |D] i [R] -4t 7| B ]
Ly i |T)ieFo- BV2TA] T R Ly i D) iR E-c- B2 B]
’ FLyi|D)i-f-:-Ustri™ A Fﬁljf}LFj%[R]%w-l}strSlB[®]
FX | |4ADB|* 115l FLyi|T)i[R]f-:-Ustr'm AQstr™' B ]
FLyi|T]i[R]f|ADB]:-|[AD Bt (str' A®str® B)
[Doo, 2 x 3]

Fﬁ]jfil_FJ?fR}?\_ADBJ;.ﬂ

where ¥ is the set of formulas Ly 1 |T'] i - # |A D BJ. Here, the role of the subexponential | and
r-bangs is most important: the latter bang ensures that the f-context in the right-most branch is
empty, and the former bang ensures that both the r and f contexts, in the middle branch, are empty,
enforcing that the atom | A D B] is consumed in the left-most branch and that the atom [R] is moved
to the right-most branch. As the D, rules are implicit in the theory Ly, there is another derivation
that also introduces the formula (D;), which corresponds to the object-logic derivation composed of
the rules D; and D;.

e VVi: Assume here that A; is a positive polarity formula. The other cases are similar.

Ly 1 |T] 57 [A] 1
Ly 1 |T) i 27 [AL]
F Ly 1| T i U1 AL
Ly 1T il strsm Ay

2]

V]

T [If] : A [@1]
= Z»u ’—Al \/AQ‘| "E]jfl \_FJ refel llStI'STAl @StI‘STAQ [®]
F Ly 1 [T) i-7[A1V Al s+ I [AL V Ag]* @ (str™" Ay @ str®” Ag)
[Deo, 2 x 3]

FLye i |T] b £ [Ay v Al c -

where ¥ is the set of formulas Ly 1 [T] i - [A; V Aa]. Once again the role of the subexponentials is
crucial for the correct encoding of the object-logic rule: the [-bang ensures that the subexponential
contexts for f and r are empty. There are other derivations that introduce the formula (V,.), which
correspond to the object-logic derivations composed of D and V,;, for ¢ € {1,2}. These derivations
and the remaining rules appearing in the synchronous phase are similar to the two cases above.

e A;: Assume below that A is a positive non-atomic formula and B is a negative formula.

I, B],0,A— R
,0,A,B— R ml]+
[,0,ANTB— R N s
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F Ly 1| T, Bl i-i-:[0,A],[R] ¢
FLyei D) E--: O, [R] 1 LA, ?'[B]
FLyei D) i--: O, [R] I Al ® ?'B)
FX | |[AAT B]® ] Ly 1 |T]i-7-:1©],[R] | str AB
Ly 1 |T)i-7-:10,AAT B],[R] | [AAT B|*t @ (strg! AB)
Ly 1|T]i-7-:1©,AAT B],[R] ¢

|R1, 7]
(R, 9]

[]
[Doo,2 x I

where ¥ is the set of formulas i Ly, |T'| i - # - : [AAT BJ. Since the rules R; are implicit in the
theory Ljjr, there is another derivation that introduces the formula (/\f), which corresponds to the
object-logic derivation composed of the rules R; and /\l+.

e A : Assume that both A and B are negative non-atomic formulas.

r,0 —A [,0 —B

r,e — AA" B A o
FK: 16 TA] ¢ FK:|O,[B]1
e BN e e [
FK:|© A FK:|©
O] 1 [A] LJTT[M[R@’&]

Ly |T]i-7-:10©] §[A] & [B]
FK:[AA Bl [AA B]*+ 1 FLy i |T)i-f-:|0] Istry” AB
Ly |T]i-7-:1©],JAA" Bl [AA~ B]* @ (stry” AB)

F Ly i |T]i-i-:[O©],[AA" B] 1

[®]
[Doo,2 x ]

where K is the set of formulas i L, |T'] & - f . Since the rules R; are implicit in the theory Lijr,
there is another derivation that introduces the formula (A} ), which corresponds to the object-logic
derivation composed of the rules R; and A . O

6.8 Other Focused Proof Systems

Liang & Miller also show in [Liang 2008, Liang 2007] how to encode the focused systems LJQ’
[Dyckhoft 2006], LJT [Herbelin 1995] and ARCC [Jagadeesan 2005] in LJF. They encoded these
systems by modifying the synthetic connective of object-logic formulas, by, for example, changing
the polarity assignment of atoms, or by using equivalent formulas that might have different focusing
behaviors, such as the formulas F' and F' AT ¢, when F is a negative formula. Given the encoding
Lyjs for LJF, one can easily obtain encodings for these other focused proof systems by using the same
translations used by Liang & Miller.

6.9 Conclusions and future works

We have illustrated that, by using subexponentials, a wide range of proofs systems can be encoded
in the same declarative way as done in Chapter 4 and with the strongest level of adequacy — the
full completeness of derivations. For example, we encoded the GI sequent calculus for minimal,
intuitionistic and classical logic; the multi-conclusion system for intuitionistic logic, mLJ; and several
focused proof systems: LJQ*, LJF and LKF. The subexponentials present in the theories encoding
these logics played an important role to correctly specify the structural restrictions of these systems,
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such as, in intuitionistic logic, the right-hand-side of sequents contain at most one formula or, in the
focused systems, the decide, release and react rules that specify the focusing discipline on proofs.

Although these theories are declarative and describe exactly the proofs systems encoded, we have
not yet given equivalence results between any two theories of the same logic, that is, for example, the
theory for LKF proves the same theorems as the theory for GIc. One consequence of such equivalences
would correspond to the focusing theorem for LKF stating the completeness of the focusing discipline.
However, the equivalence arguments seem to be harder than the reasoning used in Chapter 4, as one
would have to relate specifications that use different subexponentials. As future work one could try
to relate different theories by using linear logic equivalences or simple proofs by induction.

Miller & Pimentel [Miller 2002] presented necessary conditions for assuring that an encoded sys-
tem satisfies cut-elimination. In that paper, they assumed linear logic theories that did not contain
subexponentials. A direction for future work could be to use the dualities in linear logic with subex-
ponentials to find similar conditions for systems encoded in linear logic with subexponentials.

Many other systems have structural restrictions that seem hard to specify by using subexpo-
nentials. For example, in the G3 systems [Troelstra 1996], the main formula of an inference rule is
consumed, while the side formulas are contracted. Subexponentials do not seem to capture this type
of behavior because contexts can only be seen either as sets or multisets, and therefore either the
whole context is contracted, including the encoding of the main formula, or no formula in the context
is contracted.

Miller & Saurin proposed, in [Miller 2007b], the multifocusing system for linear logic that allows
the focusing on more than one formula. We do not encode this system here, but it seems to be possible
to do so, by using, instead of SELLF, its multifocused version. One still would need to understand
how to relate a synchronous derivations in the meta-logic with object-logic derivations.






CHAPTER 7
Algorithmic specifications in linear
logic with subexponentials

In this chapter, we continue to exploit the increase of expressiveness obtained by using linear logic
with subexponentials for the specification of algorithms. In particular, we use subexponentials to
assign locations to multisets of formulas within a linear logic programming setting. Treating locations
as subexponentials greatly increases the algorithmic expressiveness of logic. To illustrate this new
expressiveness, we show that focused proof search can be precisely linked to a simple algorithmic
specification language that contains while-loops, conditionals, and insertion into and deletion from
multisets. We also give some general conditions for when a focused proof step can be executed in
constant time.

Reference: parts of this chapter appeared in [Nigam 2009a].

7.1 Introduction

Computation in the proof-search paradigm (a.k.a. logic programming) can be characterized as the
process of searching for a cut-free sequent proof. The expressiveness of logic programming can be
judged, in part, by examining the kind of changes that can take place within sequents during the
search for a proof. Let = be a cut-free proof of I' = A and let IV - A’ be a sequent occurring in
=Z. The dynamics of proof search in this setting can be partially judged by examining the possible
differences that can occur between I' and I and between A and A’.

When proof search is conducted within intuitionistic logic, I is usually treated as a set of formulas
and A as a single formula. If we restrict further to Horn clauses, we find that ' = I and that A
and A’ are atomic formulas. Thus, the only real dynamics during proof search with Horn clauses
is that atomic goals change as we move upward through a proof. As a result, all data structures
and their various relationships must be encoded as terms within atomic formulas: that is, all the
dynamics of computation is buried within non-logical contexts (within the scope of predicates). If
one uses hereditary Harrop formulas instead of Horn clauses, slightly richer changes are possible: in
particular, I' C IV. When proof search is conducted within linear logic, both I" and A can be treated
as multisets and the logic program is free to specify arbitrary, computable relationships between I'
and TV and between A and A’. In linear logic, some data structures and their relationships can be
encoded directly in the logical context of proofs.

Of course, many data structures can be encoded naturally as sets or multisets of atomic formulas:
for example, a graph given by a set of nodes N and an adjacency relation A can be encoded as the
multiset of atomic formulas

{node x | x € N} U{adj z y | (z,y) € A},

where node and adj are predicates. A major obstacle to describing algorithms using linear logic
programs is that data encoded into contexts does not support enough tests on data. While it is
possible in linear logic to detect that the global multiset context is empty, it is not possible to



128 Chapter 7. Algorithmic specifications in linear logic with subexponentials

perform this test on less than the entire context. Given the multiset encoding of graphs above, linear
logic provides a simple mechanism to detect that both the set of nodes and the adjacency information
are empty but the logic does not provide a means to check emptiness of just N or just A.

Subexponentials can be used to “locate” data and the promotion rule can be used to test selected
locations for emptiness. These subexponentials provide linear logic specifications with enough checks
on data to allow for a range of algorithms to be emulated ezactly via (focused) proof search. We
shall illustrate this claim by specifying a simple programming language, called BAG, containing loop
instructions, conditionals and operations that insert into and delete from a multiset, which is powerful
enough to specify complicated algorithms, such as Dijkstra’s algorithm for finding the shortest dis-
tances in a positively weighted graph. We then show that for any BAG program there is a one-to-one
correspondence between the set of its (partial) computations and the set of (open) focused proofs of
its logic interpretation.

Since there is an exact correspondence between synthetic connectives in the logic and steps in
the algorithmic language, we can vary the operational semantics of the algorithmic language by
varying certain focusing-related features of the logic. In particular, by either inserting or removing
delay operators into a logic specification, we can package more or fewer operations inside a synthetic
connective. For example, reading two items from a multiset can be described as two algorithmic steps
or as one algorithmic step.

In order to turn a logic specification into an algorithm, one must usually adopt an inter-
preter for the logic and then understand algorithmic nature of that interpreter. Top-down, depth-
first interpreters are traditionally used to describe the algorithmic content of, for example, Horn
clauses as Prolog programs. Other algorithmic rendering of logic clauses use bottom-up interpreters
[Ganzinger 2001]. In this chapter, we shall not use any explicit interpreter for this role: instead, recent
advances in proof theory will be used to organize proof search in algorithmically explicit but still fully
declarative ways. In particular, we use the focused proof system for SELL for which possibly large
sets of connectives can be treated as a single, monolithic, synthetic connective and where, in many
situations, the inference rules related to such synthetic connectives can be applied in constant time.
As a result, the particular nature of whichever interpreter one eventually uses for finding proofs can
be largely eliminated when attempting to understand the algorithmic content of a logic specification.

The remainder of this chapter is structured as follows: in Section 7.2 we illustrate with a small
example the increase of expressiveness obtained by using subexponentials. Section 7.3 contains some
preliminary machinery we use in order to demonstrate how to specify algorithms in SELLF. We re-use
the notion of definitions to specify arithmetic operations. We then explain how data is represented
and stored by using subexponentials. Finally, we specialize the logic SELL™ to allow for the creation
of new locations. Section 7.4 introduces the syntax of the BAG programming language and shows
how different intended semantics for it can be captured by using SELLF formulas. Sections 7.5 and
7.6 present some example algorithm specifications along with some comments about proof search
complexity. Finally, in Section 7.7, we describe some related work, and in Section 7.8, we conclude
by proposing some directions for future work.

7.2 Example: a minimal element of a multiset

Before we enter into the technical material, we illustrate with a small example the increase of ex-
pressiveness obtained by using subexponentials. Consider the nonempty multiset of natural numbers
{my,...,mu}. Let ({oo0,l,k},{k < 00,] < 0},{oc},{c}) be a subexponential signature where [ and
k are not =<-comparable. Also, assume that all atoms are assigned negative polarity and let KC be the
indexed context where K[| is the set

{ 3eyl@)r ©ly)- @ (@ <y)© (@), 3zll(2)" © " min(2)] },
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Klk] = 0, and K[l] = {I(m1),...,{(my,)}. This context contains exactly two positive formulas and,
hence, there are only two formulas on which to focus. We now derive in detail these two synthetic
connectives.

Focusing on the first formula requires building the following derivation bottom-up:

FK L m)t @1(mj)t @ (mi < mj) @ 2 (m;)

FK - 3eTyll(z)t @1(y)t @ (2 <y) @ 2i(2)]
FEC:-1

Continuing this phase of the proof requires finding four indexed contexts such that 1 ® Ko ® K3 ®
K4[l] = KJl] for all indexes [ and such that the following four sequents - /Ky : - |} I(m;)L, F Ko @ - |
Imj)t, s Umy <mj,and F Kyt 1) ?ll(mi) are provable. The first two sequents are provable
if and only if K1[l] = {I(m;)} and Kz[l] = {I(m;)}'. The third sequent is provable if m; is less than
or equal to m; and K3[l] = {}. This means that K4 is the same as K except that k4[] is the multiset
K[1] less the two distinct elements I(m;) and I(m;) (hence, n > 1). The remainder of this proof phase
is necessarily of the form:

FICy 4+ 1 (myg) - - 7
Ky M)
R

Ky | 2 (my) 7]

In other words, the synthetic connective arising from focusing on the first formula in the logic
specification provides a proof of the sequent - K : - {} - from the premise - K’ : - f - exactly when K[I]
contains at least 2 elements and K’ is the same as K except that K'[l] results from K[l] by deleting
one atom holding an integer greater than or equal to another integer in that multiset.

If we focus on the second formula, the resulting “macro” rule is built from the following “micro”
rules.

F Ky : min(m)
] F Ko i -t min(m)
Ky - I(m)* F Ky s U 1 min(m)
K- U i(m)t @ ¥ min(m) Bl
K- 3z[l(2)t @ P min(x)) D]
FK: >0

[21]

%]

[]

Here, K1 ® Ko = K and K4[l] = {l(m)}. Also, K2[l] is empty, a fact guaranteed by the promotion
rule and the fact that ! and k are not <-comparable. Thus, the corresponding synthetic connective
provides a proof of the sequent - K : - f from the premise - K’ : min(m) f} only when K[l] contains
exactly one element (m) and K’ is the result of setting the multiset K'[l] to the empty multiset.

The logic specification above clearly computes the minimal member of a multiset in a structured
fashion: if the number of elements in the multiset (in location I) is one, then the minimum is found;
and if the number of elements is more than one, then one element is discarded that does not affect
the minimum. These two steps are described by focusing on different clauses. Notice that a proof
using these clauses does not involve any backtracking from the point of synthetic connectives, while
internal to the synthetic connective one might envision possible backtracking search (for example, to
find m; and m; such that m; < m;).

IRemember that atoms, such as I(m), are assigned negative polarity and, hence, I(m)= is assigned positive polarity.
Moreover, only the initial rule can introduce a focused literal with positive polarity.
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7.3 Preliminaries

In order to better illustrate some algorithms specifications in SELLF, we introduce the following

machinery. First, we show how to specify arithmetic operations by using definitions. We then

explain how we can represent data structures in SELLF by using subexponentials to locate such data

structures. Finally, we propose a specialization of SELL™ that allows for the creation of new locations.
We also assume that the subexponential signature is ¥ = (I, <, W, C).

7.3.1 Including definitions and arithmetic operations

Several of the examples and algorithms that we consider in this chapter will need integers and some
basic arithmetic operators on them. These all can be accommodated easily within SELLF in a
purely “positive” setting. In particular, the arithmetic comparisons for integers, <, <,=,#,>,>, are
available as binary predicates within SELLF by using definitions (see Section 6.2). For example the
definition for < is

1<y £ p=de @y E=sr)ey=sy)s <y
The left disjunct specifies the base case when the first element is zero, denoted by the constant z, and
the right disjunct specifies the recursion over the elements of the comparison. The other arithmetic
comparisons are specified in a similar way.

If ¥ denotes one of these relations, then the formula mV¥n is positive and provable instances of it
are composed of exactly one positive phase and without the consumption of any formulas from the
context. More formally, if IC is an indexed context then F IC : T" | mV¥n is provable if and only if m
and n are integers that stand in the relation intended by ¥ and ' U KC[I \ W] is empty. We write ¥
to be the comparison that is the complement to the one denoted by ¥: e.g., s <tiss >t

We assume that basic integer addition and multiplication are also available as purely positive
synthetic connectives. In particular, expressions such as z < y+w are replaced by Ju.plus y w u®z <
u, where plus y w u denotes the relation between y and w and their sum u and is specified by the
following definition:

plus y w u 2 [y=z@w=ul @[ (y=sy)® (u=su)®plus y wv].

The left disjunct specifies the base case when the first element of the sum is zero, and the second
disjunct specifies the recursion over the first element of the sum.

7.3.2 Representing Data Structures

As we described in Section 7.1, most of the dynamics of logic programming within classical and
intuitionistic logic occurs within atomic formulas: thus, data structures are usually encoded as term
structures so that they can appear within the scope of predicate constants. For example, a set of
pairs {(z1,y1),...,{Tn,yn)} can be encoded as the term ((zy ::yp ::nil) i -~ (2 1 Yy nil) 2 nil),
where :: and nil are the non-empty and empty set constructors. In SELLF, it is possible to encode
many data structures using multisets of formulas instead of terms. For example, the same set of pairs
can be represented as
?lrel(xl,yl), ce ?lrel(xn,yn)

in which the subexponential l provides a “location” for this data structure. Furthermore, the collection
of formulas above encodes a set if [ € C or a multiset if | ¢ C.

In the rest of this chapter, we constrain indexed contexts as follows: for any subexponential [ € I,
the multiset K[l] contains only atomic formulas and these are built with a predicate whose name is
the same as [. Linking the predicate name of atomic formulas to their locations in this way is a
convenience for the examples we shall consider. We also assume that all atoms used to encode data,
i.e., atoms in KC[l] will be assigned negative polarity.
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LUA{loc} F K, C
LE I, mloc.C

[M;, provided loc is a new location]

—

L+ K,Cls/loc,s/loc]
LEF I, Yloc.C

[U;, provided s € £]

Figure 7.1: The introduction rules for m; and W;. Here L is a set of locations.

7.3.3 Complements of locations

Since we will soon turn our attention to algorithm specifications in SELLF, we shall make two further
restrictions in how we deploy SELLF.

First, we shall assume that all locations, I, except the special unbounded maximal location oo, are
bounded (that is W = C = {}) and only related to s (that is I < oc). Thus, data structures can be
stored in different locations and no two locations will be considered sublocations.

Second, as the example above illustrated, testing that a given location [ is empty required the
promotion rule with a location k such that k& A [. To ensure that we have the ability to perform all
such tests, we shall define the complement to the subexponential signature ({oc} U, <, {oc}, {co}) to
be the signature ({co} UT U T, =, {oc}, {o0}) where I is a copy of I containing elements of the form [
whenever [ € I. The order relation =< is extended with all pairs [ =< k such that [ and k are distinct
members of 7. Thus, in the complemented signature, [ can be seen as a sublocation of all locations
in I different from . The promotion rule with the subexponential !' succeeds only if the indexed
context is empty at location [: all other locations need not be considered. We shall not “store” data

in complemented locations: that is, K[l] will always be empty.

7.3.4 Creation of new locations

Up to now, all locations are fixed throughout a proof. However, we have already proposed in Chapter 5
the proof system SELL™ that allows for the creation of new subexponential indexes. We propose here
a specialization of such system, called SELL™ that, instead of considering general subexponential
signatures, assumes only a set £, containing all the bounded locations available to store data, and the
existence of their complement locations, as discussed Subsection 7.3.3. It contains the connectives My
and U;, whose introduction rules are given in Figure 7.1. The introduction rule for @; creates a new
location and its complement location, while the introduction rule for U; instantiates all occurrences
in C of loc by s and of loc by 3. As in the focused system for SELL™, we consider the connective
as asynchronous and U; as synchronous.

7.4 Specifying Algorithms

There is a high-degree of “algorithmic context” in the description of synthetic connectives within
SELL, especially once we made a few restrictions to that logic. In order to make the scope of such
algorithmic specifications more evident, we present a small specification language that can be used to
describe some single-threaded algorithms: while multi-threaded algorithmic specifications are possible
in linear logic (see, for example, [Miller 1996]), we focus here on more traditional and determinant
algorithmic specifications.

The following grammar introduces a high-level syntax for a small specification language we call
BaG. We consider a fixed set of constants C that contains the natural numbers plus other tokens that
we may need, such as blue, red, etc. We allow for two kinds of variables: members of var € V denote
variables over the first-order domain C, while members of K € K denote variables over programs
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(continuations). To facilitate the construction of specifications in BAG, we introduce a new kind of
variable L € L for locations and introduce a set of constants name € A for module names. The other
syntactic classes can be defined as follow.

t n=ceC|var tup == (t1,...,t,) (n >0)
pat  :=tup | Avar.pat

cond, ::=t; Vtq cond; == is_empty loc,
cond :=cond, | cond,

prog ::=load tup loc prog | unload; loc pat bprog
| while cond, (AK.prog) prog
| loop; loc, kprog prog | new loc AL.prog
| if cond prog | prog || prog | K | end

bprog ::= prog | Avar.bprog

kprog ::= AK.prog | Avar.kprog

Iprog ::=A\K.prog | AL.Iprog | Avar.Iprog

mod ::=name X Iprog.

Conditions (tests) are of two kind: cond, are arithmetic tests (see Section 7.3.1) and cond; will
be used to test if a given location is empty. The syntactic variable loc, ranges over all bounded
locations (here, all locations other than « and complement locations). In the unload; (respectively,
loop,) instruction, we will also insist that pat and bprog (respectively, kprog) both have exactly ¢
variables bindings. Moreover, when a module is used in a program, execution proceeds by computing
the program resulting from performing the necessary beta reductions. Keeping with the single-
threadedness of BAG, modules contain one and only one abstracted continuation variable.

The eight kinds of program types in BAG are described briefly as follow. (1) (load tup loc prog) in-
serts the tuple tup in the location loc and then continues with prog. (2) (unload; loc pat bprog) picks
an element, (t,...,t,), from the location Ioc such that it matches with the term pat t! - - ¢ for some
t/ € {t1,...,t,} and then executes the program (bprog t!---t!). (3) (while cond, (AK.prog) prog)
repeatedly applies AK.prog until the condition is not true; then prog is executed. (4)
(loop; locy, pat bprog) repeatedly executes (unload; loc, Axy ... \x;.(x1,...,2;) bprog), where all
xj € V, until the location loc is empty. Intuitively, this loop is used to process all members of a loca-
tion. (5) (new loc AL.prog) creates a new location loc and then executes the program (AL.prog)loc.
(6) (if cond prog) executes prog if the condition cond holds. (7) (prog; [ prog,) is an alternative
instruction, where the computation proceeds to either prog; or progs. Lastly, (8) end ends the
computation thread. Notice that this language is similar to Dijkstra’s Guarded Command Language
(GCL) [Dijkstra 1976]: in particular, the | instruction is similar to GCL’s if constructs, and the
while and loop instructions are similar to GCL’s loop constructs.

Our wish here is not to describe a new specification language but to highlight the algorithmic
aspects already present within focused proof search in SELL. To this end, we show how the intended
operational semantics of the BAG language can be specified by mapping it directly into SELL formulas.
In particular, we will illustrate that the non-determinism that exists in an algorithmic description
with, say, BAG, matches exactly the non-determinism in SELLF’s at the level of synthetic connectives.
There is still more non-determinism one can imagine within proof search in SELLF, but those are
contained within the construction macro-level inference rules. Later in Section 7.6, we shall discuss
that in many cases, the construction of macro-level rules can, in fact, be done in constant time.

Being able to specify when a synthetic connective ends is critical for our claims about how focused
proof search and algorithms in the BAG language relate. The two delay operators 6~ (+) and 6 (+) can
be used to replace a formula with a provably equivalent formula of a given polarity. In particular,
d~(C) is negative no matter what polarity C' is: it can be defined as C ’® L. Similarly, 6T (C) is
positive no matter what polarity C is: it can be defined as C' ® 1.
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load (t) I prog = 711(5) 2§t (prog)
unload; I pat bprog £ I(pat vy ---v;)*t ® [0~ (bprog vy - - - v;)]
while (¢1Vis) (AK.prog) prog £ [(t1Vt2) ® 6~ ((AK.prog) (while (t1 Vt2) (AK.prog) prog))]
®[(t1¥t2) ® 6~ (prog)]
loop, I kprog prog £ [(v1,...,v:)"t @6~ ((kprog vy ---v;) (loop; I kprog prog))]
@!'(prog)
A
prog, [ prog, = prog; ® prog,
ops A
if is _empty I prog = !(prog)
if (t1Vt2) prog 2 (v e 0~ (prog)
new loc \L.prog £ M;loc prog
A
end = 1

Figure 7.2: The definition clauses for specifying the execution of BAG programs.

The definition D in Figure 7.2 specifies a “proof theoretic” semantics of the BAG language. (For
readability, we have suppressed writing the outermost universal quantifiers on these clauses.) The

alternation of polarities, the use of the subexponential !Z, and the placement of delays in this definition
are particularly important to notice. For example, the meaning of the load command is given by
using a negative formulas as its body: this command proceeds without needing any coordination with
anything in the context, as illustrates the following derivation:
FIC+ 1(E) : - A 61 (prog)
FIC:-1f ?Il(t_), 5t (prog)
S G ?Il(t_) 2 &1 (prog)
F K : -4 load () prog

ol

[def 1]

Because of the positive delay 41 (-), it must be the case that the negative phase ends by performing
R{. Thus, this specification for load corresponds to the intended operation of loading ezactly one
tuple in a location.

All other instructions (except for end and new) are defined by positive formulas. In these cases,
choices must be made and backtracking might be necessary inside a positive phase. For example, if
one is focused on a while instruction then that focus continues on a formula of the form

V(t1vt) @ 67 (O)] @ [(t1 V) ® 6 (D)]

At the “micro-rule level,” proof search must pick between the two branches of the & and then determine
which branch succeeds: at this level, some search may be required to compute the proper macro-step,
but in the end, proof search will continue with either {} C or with 9 D (the occurrences of §~(-) forces
the flip of |} to 1}): here, the choice is completely determined by the guards and this is reflected also
with the “macro-level” inference rules.

Notice that there are no delays written into the definition of the | operator since we wish that
the choice provided by that operator is merged with choices in the instructions it accumulates. For
example, the instructions

(if (z < y) prog,) [ (if (is_empty [) prog,)
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are equated, via the definition mechanism, to the formula

((x < y) ® 6~ (prog,)) & prog,.

This synthetic connective combines internally the test z < y with the emptiness check of location [.

The correspondence between focused inference rules and algorithmic steps is precise: in particular,
all partial proofs involving synthetic connectives match exactly the algorithmic steps that are possible.
Thus, algorithmic steps that lead to failures are matched exactly with partial proofs that cannot be
extended to complete proofs. As the behavior of an algorithm corresponds to the set of all its possible
computation runs, this implies that the focused derivations obtained from Figure 7.2 capture exactly
the behavior of BAG programs.

We now take the opportunity provided by this type of full adequacy to illustrate that by controlling
the size of synthetic connectives, via the use of delays, we are able to capture different intended
semantics for BAG and change the behavior of its programs. Consider the alternative operational
semantics for alternation [, where a step would correspond to only picking one of the non-deterministic
choices and not executing the first command of the chosen program. We can capture such intended
semantics by reducing the size of alternation’s synthetic connective with the use of negative delays,
as shown below:

A _ _
progy [ progs, = 0~ (prog;) @ d~ (prog,).

Because of the extra negative delay operators, the positive phase must stop before applying the first
instruction of the selected program. In this case, while the number of successful computation runs of
a program does not change, the number of computation runs that fail might increase.

On the other hand, increasing the size of synthetic connectives, by removing delay operators,
increases the amount of operations packaged in a synthetic connective, increasing, hence, the size of
its corresponding transition step. These choices can also have deep consequences to the behavior of
the system. Consider for example, a new definition for the unload instruction that does not contain
a negative delay operator. In this case, one captures the intended semantics where all consecutive
unload commands are performed in a single step. Since the non-determinism involved in picking
the right tuples to unload is contained in the execution of a single transition step, the number of
computation runs that succeed does not change, but the number of computation runs that fail might
decrease.

Notice that since the unload and load operations are defined using dual connectives (® and 7,
respectively), they cannot be part of the same synthetic connective. Such a restriction on a synthetic
connective (and on the associated algorithmic step) is sensible since the order in which one performs
these operations can lead to different results.

7.5 Examples

The module extractMin, that extracts the minimum element from a multiset, is depicted in Figure
7.3. (For readability, the A-abstractions associated with unload and new statements are elided, and
we denote programs of the form A (B C) as (A; B C).) This module takes three locations, I;, I,, and
min, and a continuation program prog. The module moves the minimum element of the multiset,
located in I;, to the location min, and moves its remaining elements to the location I,.

The BAG program ng in Figure 7.4 checks if a graph, G, is bipartite. It takes as input three
locations, for which all, except ver, are empty. Initially, all nodes are gray and later their color can
change to blue or red. We use the location ver to store the nodes that are gray and the location col
to store the nodes’ color information. First, we create two auxiliary locations pr and edges. The first
loop performs the initialization of the nodes’ colors. Then, the second loop starts to traverse a new
component of the graph, by picking any node from ver, assigning it the color blue, and inserting it
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extractMin = Al;A\l,Amin\prog. //1I; - input location with a multiset of numbers;
/ /I, — output location with the remaining elements;
//min — output location with the minimum element.
unload; I; (n, v) //unload any element and set it as minimum
load (n, v) min
loops I; Anj; Av;Alcont //loop through the elements in I; and update minimum element
unload,; min (ny, vy,)
if (vip < vp)
load (n,, v;;) min (load (n;,v;) I, lcont)
if (v > vp)
load (n;, vi) min (load (np, vy,) I, lcont)
prog //no more elements in I;; minimum element in min; and the remaining elements in I,.

Figure 7.3: Extracting the minimum element

in the auxiliary location pr. The inner loop, that traverses through a component of the graph, starts
by picking any node, s, in pr. It then invokes the module getEdges that loads the edges connected
to s in the location edges. This module can be seen as a series of alternatives of if instructions, that
checks the input node and loads accordingly the edges in a specified location. The third loop traverses
through these edges. There are two alternatives, either s is blue or it is red. If it is blue, the program
checks if all adjacent nodes, adj, are assigned the correct color (red), or assigns it the correct color
and insert it in the location pr, or alternatively if adj is blue then the answer no is loaded in location
ans and program finishes by proceeding to prog. A similar procedure is performed when s is red. If
all nodes in ver are consumed then the graph is bipartite and the answer yes is loaded in the location
ans.

The second example is the Dijkstra’s algorithm that finds the shortest distance in a positively
weighted graph, G, which is specified by the program, ng, depicted in Figure 7.5. It contains two
modules, the main module initializes the location ver by assigning the distance to all nodes to infinity,
except the source node, src, whose distance is zero, and then calls the second module dijkstra. This
module starts with two alternatives: if ver is empty, then the program ends with the shortest distances
located in dist; or, it invokes the extractMin module, described before, to extract from ver the node,
np,, that has the minimum distance, which will be located in the auxiliary location min. The remaining
nodes are transferred to the auxiliary location ver’. Then it adds n,, together with its distance in the
location dist. Next, it invokes the module getEdges which loads in the auxiliary location edges all
nodes adjacent to n, with the associated cost of the edge. The program proceeds by looping among
these edges and updating the distances of all nodes adjacent to np,, in ver’, accordingly. Finally, the
dijkstra module is called again but this giving as input the auxiliary location ver’, as the remaining
nodes are now located there.

7.6 Complexity Analysis

The strong adequacy obtained for the encoding of BAG only ensures that any logic interpreter that
searches for focused proofs by decomposing synthetic connectives will construct objects that cor-
respond to computation runs of BAG programs. However, in order to analyze the complexity of
algorithms, we must enter into implementation details. We now briefly propose an implementation
that can, in many situations, compute in constant time if a synthetic connective can be used to help
prove a given sequent. In particular, it is easy to show that it takes constant time to build a focusing
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bipartite = Acol\ver \ansAprog. //col - location with the colors of the nodes;
//ver — location with the graph’s unvisited vertices;
//ans — output location with the answer yes or no.
new pr; new edges //create auxiliary locations.
loop; ver AnMlcont //set node colors to gray.
load (n) ver; load (n, gray) col Icont
loop; ver AnAlcontl //pick a vertex, n, from a new component of the graph.
unloady col (n, gray) //n must be gray.
load (n, blue) col; load (n) pr //set n’s color as blue, and store it in pr.
loop: pr AsAlcont2 //unload a vertex, s, that is in the same component.
getEdges s edges //loads the edges connected to s in the location edges.
loop, edges AsAadjAlcont3 //loop over the neighbors of s.
unloady col (s, blue); load (s, blue) col //if the color of s is blue.
unloady col (adj, red) //and if the neighbor of s is red
load (adj, red) col Icont3 / /proceed.
[| unloady col {adj, blue) //if the neighbor of s is blue.
load (no) ans prog //graph not bipartite.
[| unloady col (adj, gray) //if the neighbor of s is gray,
unload ver (adj)) //then it has not been yet visited, hence
load (adj, red) col (load (adj) pr Icont3) //assign it with the color red.
[| unloady col (s, red) //similar to the first alternative.
Icont2
Icont1
load (yes) ans prog //all nodes visited, hence the graph is bipartite.

Figure 7.4: Bipartite graph checking ng

phase with the body of the load, while, and if clauses, since arithmetic operations and comparisons
can be assumed to be evaluated in constant time. Checking that the body of an alternative can be
decomposed requires a search over all alternatives, which is bound by the size of the program, again
a constant. The more interesting case involves determining if the body of an unload clause can be
used since this clause involves pattern matching. In order to do pattern matching in constant time,
we shall restrict tuples to be at most to arity 2. In that case, we represent the contents of such
binary locations by using three linked hash-tables: one for when the pattern matching is on the first
element; another hash-table when the pattern matching is on the second element; and finally the
third hash-table is used when the pattern matching is on both elements. Hence, pattern matching is
reduced to simple hash-table look-ups. Notice that one could do, in a similar fashion, constant time
pattern matching even if tuples had arity greater than two: however that would come with a high
cost in space.

Many algorithms, such as those described in Section 7.5, do not need to backtrack since all of their
computation runs yield the same output. In the case of Dijkstra’s algorithm, all of its computation
runs end and have the same final output: namely the multiset containing the shortest distances. For
these algorithms, we can use an interpreter that picks among several possible synthetic connectives
and does not backtrack. Since decomposing a synthetic connective can take constant time, we can
infer the complexity of an algorithm by counting the number of decide rules (the number of synthetic
connectives) in a derivation that witnesses a complete computation run of an algorithm. For example,
any derivation obtained from (ngco] ver ans end) where ver contains the nodes of the graph and
all other locations are empty, contains O(|N| + |E|) decide rules, where |N| and |E| are the number
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dijkstra = Aver\dist\prog.

new ver’; new min; new edges //create auxiliary locations
if (is__empty ver) prog //finish if there are no more nodes to traverse
[| extractMin ver ver’ min //otherwise, call the extractMin module.
unloads min (ny,, ¢p); load (1, cn) dist //unload the minimum node, ny,.
getEdges n,, edges //get the edges connected to ny,.
loops edges AadjAdMlcont //update the distances of n,,’s neighbors, adj.
unload; dist (adj, ¢) //either, the shortest distance to adj is already computed,
load (adj, ¢) dist Icont //then proceed;
[| unload; ver’ (adj, c) //otherwise, check if there is a shorter path to adj.

if (¢ <d+¢p) (load (adj, ¢) ver’ Icont)
[ if (¢ > d+ ¢n) (load (adj,d + cy,) ver’ lcont)
dijkstra ver’ dist prog //call the dijkstra module.

main = AnodesAdistAsrcAprog. //nodes — location with the graph’s nodes;
//dist — location with the shortest distances.
//src — name of the source node.
new ver //create auxiliary location
loop: nodes AnM\lcont //set the distance of all nodes to oo, except the source node.
if (n # src) (load (n,o0) ver Icont)

if (n = src) (load (s, 0) ver Icont)
dijkstra ver dist prog //call the dijkstra module.

Figure 7.5: Dijkstra’s algorithm ng.

of nodes and edges in a graph. Nodes are used at most three times and edges are used at most four
times. Hence, the complexity of ng is O(|N| + |E|).

7.7 Related Work

Various proposals for describing algorithms via rewriting multisets have been developed in the past.
Probably one the earliest such proposals is the Gamma programming language [Banatre 1996] al-
though the even older specification language of Petri nets is also closely related to multiset rewriting.
The Linda coordination model [Gelenter 1986] also makes use of primitive operations similar to those
used in the manipulation of multisets. The close relationship between multiset-based computation
and linear logic has been known and exploited for many years within early linear logic program-
ming languages such as LinLog [Andreoli 1992], Lolli/Forum [Miller 1996], MSR [Cervesato 2001],
and Lollimon [Lopez 2005].

It is often difficult to directly relate the search for proofs (say, in a logic programming setting) to
performing computations in a step-by-step, algorithmic sense. Probably the largest single problem in
making this connection is the need to do backtracking during the search for proofs. Such backtracking
might be acceptable if it can contained within “internal” and invisible processing steps, but it is
unacceptable if such backtracking is done between “visible” steps, such as inputting and outputting.
In this chapter, we tried to group possible backtracking points that are to be internal into single,
macro-level inference steps: other non-deterministic choices are then left to the algorithm developer
to organize appropriately.

Another approach for the treatment of backtracking is more global. One can describe computation
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as a kind of forward chaining, generative model of computation. If one saturates a set of forward
chaining rules with all possible consequences of a set of formulas, then failure to prove some atomic
goal with respect to that saturation does not lead to backtracking. If some forward chaining is used
but saturation is not done, then the failure to prove an atomic formula might be due to its not being
provable or to not having accumulated this particular consequence yet: in the later case, one would
need to backtrack and attempt to add more consequences. Saturation has been used in both the
Gamma and the Lollimon setting as such a mechanism for dispelling backtracking. We have not
pursued this approach here since we know of no proof theoretic treatment of saturation.

McAllester & Ganzinger [McAllester 2002, Ganzinger 2001, Ganzinger 2002] developed a style of
algorithm specification, called “logical algorithms,” that was inspired by bottom-up, logic program-
ming specifications. In order to account for more algorithms, they moved beyond logic in order to
incorporate the deletion of atomic formulas and the assignment of priorities to inference rule applica-
tions. Their framework was able to specify algorithms that efficiently solved problems from domains
such as graph theory (e.g., bipartite checking and the shortest distance problem), efficient data struc-
tures (e.g., the Union/Find algorithm) and polymorphic type inference [McAllester 2003]. Simmons
& Pfenning [Simmons 2008] revisited this style of logic specification and used linear logic inspired
proof search to provide a sound foundation for the deletion of atomic facts.

Common to both the approaches by McAllester & Ganzinger and Simmons & Pfenning is the use
of a bottom-up, generative interpreter that relies on saturation to control the scope of backtracking.
By a careful and, at times, complex analysis of that particular interpreter, it is possible to guarantee
efficient implementations for the specified logic programs.

There are two essential differences between our work and that on “logical algorithms.” First, we
have remained entirely within logic (in our case, linear logics with subexponentials) and have focused
on not only soundness but also completeness. In fact, we have asked for more: we have insisted
that the focused proofs that are built within that logic are in one-to-one correspondence with the
steps of a simple algorithmic specification language. Second, we have not introduced the notion of
an interpreter that directs search: in the “logical algorithm” papers, an algorithm’s description is
split between the logic specification and the interpreter. Here, there is no interpreter and the only
structure given to proof search is that derived directly from focused proofs.

7.8 Conclusions and future works

In this chapter, we have investigated the increase of expressiveness resulted by adding subexponentials
to linear logic. In particular, we have shown that a wide range of algorithms can be faithfully specified
in SELLF. We used subexponentials to locate data structures, namely multiset of tuples, and proposed
a simple programming language containing loop instructions and conditionals that manipulate these
data structures. Then, we showed that several operational semantics for this programming language
could be specified in SELLF, in such a way that there is a one-to-one correspondence between its
(partial) computation runs and (open) derivations. We illustrated that more complicated algorithms,
such as a bipartite checking algorithm and Dijsktra’s shortest distance algorithm, can be expressed
in such way.
We now point out some future research directions:

o Implementation - Still an implementation of a logic programming engine for SELLF is missing.
One could imagine extending engines used for linear logic, e.g., Lygon [Winikoff 1995], Lolli
[Hodas 1994a], Lollimon [Lopez 2005] and Forum [Miller 1996], to support subexponentials. It
seems straightforward to extend the techniques proposed by Hodas et al. [Cervesato 1996,
Hodas 1994b] to efficiently manage resources in SELLF: one must use, instead of one single
bin with resources, several bins, each corresponding to a subexponential and associate to each
bin the structural properties of the subexponential, weakening and contraction. One could use
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some data structure to represent the preorder over the subexponentials, containing the number
of elements in each bin, and when applying the non canonical bang rule, one would check if it
is applicable by using such data structure.

e Access Control - For the security in computer systems, often, access control policies are estab-
lished that determine if an agent’s request should be processed. For example, an agent can only
access a file in the system if it has authority over this file or if some authority is passed from an-
other agent that has authority to do so. Recently, several specialized logics have been proposed
as frameworks to specify and reason with such policies [Abadi 2003, Bowers 2007, Garg 2008].
It seems possible to use the preorder of the subexponentials in SELLF to specify, in a general
framework, such control access policies: we use a global unbounded subexponential u for the
general policy rules, and for each agent (or principal), A, we assign two subexponentials, ua and
ba, such that ua is bounded and ba is affine and that ba < ua < u. We use the former subexpo-
nential, ua, to store agent A’s persistent authority (or knowledge); for example, the authority of
an agent to see the contents of its bank account (or the knowledge of its bank statement); and
we use the latter subexponential ba to store agent A’s consumable authority (or consumable
resources) [Bowers 2007]; for example, an agent’s consumable authority to spend money from
its account. Notice that the subexponentials, ua and ba, of one agent are <-unrelated to the
subexponentials of another agent. Now, whenever we want to prove that an agent, A, knows
or has the authority to perform some action, F', we try to prove the formula 1®aF. To prove
this formula, we must first use the ba-bang rule, which forces that the formulas in the locations
assigned to all other agents are weakened and only the formulas in the context ba, ua and u
are used. On the other hand, if we want to add some knowledge or give some authority, F', to
an agent, we can use the formula ?“*F or ?°*F, depending if the knowledge or the authority is
persistent or consumable. For example, if the agent B has authority over a file f, and it wants to
give one-time file access permission to the agent A, we specify this operation by using the clause
aut(B,f, A)* ® ?"per(f), where the predicate aut denotes that the agent B is giving access
to the file f to the agent A. Since we add a consumable authority, specified by the ba-question
mark, the agent A would only be authorized to access the file f once. Furthermore, it is easy
to infer noninterference theorems: for example, if one adds new knowledge or authority to any
other agent, the knowledge or authority of all other agents is unchanged.

A direction for future work could be to check which properties or examples can be shown by
using SELLF formulas to specify Access Control policies.

e Concurrent Systems - In this chapter, we investigated how to specify only sequential algorithms.
Therefore, in all the clauses of the specifications, the macro-rule introducing a clause’s synthetic
connective has only one premise, and, therefore, there is only one continuation thread in BAG’s
instructions. One could imagine to specify algorithms that run in different computers by al-
lowing clauses to have more than one premise, where each premise would represent a process
in a different processor. This idea is similar to the AND-concurrency of Andreoli and Pareschi
[Andreoli 1990b, Andreoli 1990a]. There is yet another direction one could pursue, namely by
using, instead of single focused systems, such as SELLF, a multifocused system [Miller 2007b],
where more than one formula can be focused on. In such system, one could allow more than
one execution thread to be executed concurrently by focusing simultaneously on all defined for-
mulas. Synthetic connectives in such system would correspond to transition steps where these
threads are executed in parallel.

e Playing with polarities — Here, we have assumed that all atoms are given negative polarity. How-
ever, we know that more flexible polarity assignments could be given, without affecting provabil-
ity, but affecting the shape of focused proofs. A direction for future work could be to investigate
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the algorithmic content captured by such proofs where some atoms are assigned positive po-
larity. It seems possible, for example, to specify constraint systems, as in [Jagadeesan 2005],
although without the one-to-one correspondence of partial computations and open derivations.

Chemical Abstract Programming - Berry and Boudol [Berry 1990] proposed an alternative
paradigm of programming, the chemical abstract programming. Consider initially that there is
a multiset of elements and a sequence of sets of rewrite rules. The elements of the multiset react
according to a set of rewrite rules, emulating a chemical process, and when no further reaction
is possible, the next set of rules, in the sequence, is used to proceed with the computation. This
approach was carried forward by Banatre and Métayer in the GAMMA programming system
[Banatre 1996]. Later, Bruscoli and Guglielmi [Bruscoli 1996] used linear logic clauses in the
computation-as-proof-search paradigm to give a purely logical account for GAMMA style pro-
grams, without the sequentiality operator. The problem to account for sequentiality was again
the incapability of linear logic without subexponentials to specify when, only, certain linear
resources are consumed. With the use of subexponentials, it seems now possible to specify the
sequentiality operator in most of the examples shown by Banatre and Métayer [Banatre 1996],
more specifically in those cases when the sequentiality is linked with the consumption of some
specific resources. Another research project could be of investigating how far we can go with
SELLF.



CHAPTER 8

Conclusions

We have exploited two non-canonical aspects of sequent calculus, namely the polarity assignment in
focused proofs and the linear logic exponentials, by using the computation-as-proof-search paradigm
in three different domains of computer science: tabled deduction, logical frameworks and algorithmic
specifications.

At the end of each chapter, we have already discussed some pointers to future work directions.
Now we just summarize the main contributions of this thesis.

e We provided a proof theoretic explanation for tabled deduction. More precisely, we have consid-
ered two cases: the first when tables contain only finite successes and the second when tables
also contain finite failures. We then described, in Section 3.3, that we can incorporate a table
into a proof by using multicut derivations and proposed, in Sections 3.6 and 3.9, focused proofs
systems for the two cases considered. In some subsets of logic, namely hereditary Harrop formu-
las and the fragment of intuitionistic logic with fixed points used in [Tiu 2005], the only proofs
and open derivations available in these systems are those that do not attempt to reprove tabled
formulas. Later, we illustrated these results with several examples, including winning strategies,
simulation, and a declarative specification for let-polymorphism type checking [Milner 1978].

e In Chapters 4 and 6, we demonstrated that linear logic can be used as a general framework for
encoding proof systems for minimal, intuitionistic and classical logics. The proposed theories are
such that the focused derivations obtained from them and the derivations of the encoded proof
systems are in one-to-one correspondence. We also showed, in Chapter 4, that one can directly
infer relative completeness results between different encoded proof systems; for example, that
sequent calculus and natural deduction systems for intuitionistic logic prove the same theorems.

e We investigated, in Chapter 5, the proof theory for subezponentials and proposed different
focused systems containing these non-canonical exponentials. First in Subsection 5.2.1, we
considered the case when relevant formulas are not allowed and then in Subsection 5.2.2, we
proposed two focused proof systems for logics containing relevant formulas. Later in Section
5.3, we proposed an extension to linear logic that allows for the creation and modification of
subexponential indexes.

e Our last contribution consisted in illustrating what kinds of algorithms can be faithfully specified
by using subexponentials. We use subexponentials to locate multiset of tuples and show, in
Chapter 7, that the operational semantics of a simple programming language, containing loop
instructions, conditionals and operations that include to and delete from a multiset, can be
captured by using linear logic with subexponentials. Finally, we illustrate this result with
several graph algorithms, such as Dijkstra’s algorithm for finding the shortest distances in a
positively weighted graph, and an algorithm for checking if a graph is bipartite.






APPENDIX A

Appendix

A.1 Natural deduction rules and their linear logic encodings

We list below several examples of how natural deduction rules are accounted for by focused deduction
in linear logic. The following correspondences can be used to prove Proposition 4.7. In the derivations
below, K = LU {Stry,Id;,Id2} U |T'] and all [-] given negative polarity and all |-| are given positive
polarity.
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The pairing for the 37 and JE rules are similar.
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