Exploiting non-canonicity in the Sequent Calculus

by Vivek Nigam

Ecole Polytechnique - France

Thesis Defense

18 September 2009

My Thesis

Exploiting non-canonicity in the Sequent Calculus

My Thesis

Exploiting non-canonicity in the Sequent Calculus

- Polarity assignment of literals in focused systems
- Linear logic's exponentials

My Thesis

Exploiting non-canonicity in the Sequent Calculus

- Polarity assignment of literals in focused systems
- Linear logic's exponentials

- Tabled deduction
- Logical frameworks
- Algorithmic specifications

Agenda

■ Sequent Calculus

- Focusing
- Tabled Deduction
- Algorithmic Specifications
- Logical Frameworks

$$P_1,\ldots,P_n\vdash Q_1,\ldots,Q_m$$

Sequents

Sequents

$$P_1,\ldots,P_n\vdash Q_1,\ldots,Q_m$$

$$P_1 \wedge \cdots \wedge P_n \Rightarrow Q_1 \vee \cdots \vee Q_m$$

$$P_1,\ldots,P_n\vdash Q_1,\ldots,Q_m$$

Sequents

$$P_1 \wedge \cdots \wedge P_n \Rightarrow Q_1 \vee \cdots \vee Q_m$$

Inference Rules

$$\frac{\overline{P} \vdash P}{\Gamma} I$$

$$\frac{\Gamma \vdash P, \Delta \quad \Gamma \vdash Q, \Delta}{\Gamma \vdash P \land Q, \Delta} \land_{r}$$

$$\frac{\Gamma \vdash P_{i}, \Delta}{\Gamma \vdash P_{1} \lor P_{2}, \Delta} \lor_{ri}$$

$$P_1,\ldots,P_n\vdash Q_1,\ldots,Q_m$$

Sequents

$$P_1 \wedge \cdots \wedge P_n \Rightarrow Q_1 \vee \cdots \vee Q_m$$

Inference Rules

$$\frac{\overline{P} \vdash P}{\Gamma} I$$

$$\frac{\Gamma \vdash P, \Delta \quad \Gamma \vdash Q, \Delta}{\Gamma \vdash P \land Q, \Delta} \land_{r}$$

$$\frac{\Gamma \vdash P_{i}, \Delta}{\Gamma \vdash P_{1} \lor P_{2}, \Delta} \lor_{ri}$$

Proof

$$\frac{\overline{A} \vdash \overline{A}}{\vdash A \lor A^{\perp}, A} \urcorner_{r_{1}} \lor_{r_{2}} \\ \frac{\vdash A \lor A^{\perp}, A}{\vdash A \lor A^{\perp}, A \lor A^{\perp}} \lor_{r_{1}} \\ \frac{\vdash A \lor A^{\perp}, A \lor A^{\perp}}{\vdash A \lor A^{\perp}} C_{r}$$

$$\frac{\Gamma_1 \vdash P, \Delta_1 \quad \Gamma_2, P \vdash \Delta_2}{\Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} \quad Cut$$

New formula in the proof. Use of a Lemma.

Proof with Cuts

Cut-free Proof

New formula in the proof. Use of a Lemma.

Proof with Cuts

Cut-free Proof

Consequences

1) Consistency

$$\vdash P \qquad \vdash P^{\perp}$$

2) Subformula Prop.

No need for Lemmas

Computational Logic

Computational Logic

Proof normalization

Functional Programming

Computational Logic

Proof normalization

Functional Programming

Logic Programming

This thesis

Proof search

Classical Logic

$$\frac{\frac{\overline{A} \vdash \overline{A}}{\vdash A^{\perp}, A}^{I}}{\vdash A \lor A^{\perp}, A}^{\lor_{r2}} \\ \frac{\vdash A \lor A^{\perp}, A}{\vdash A \lor A^{\perp}}^{\lor_{r1}} \\ \vdash A \lor A^{\perp} C_{r}$$

Truth

Classical Logic

$$\frac{\frac{\overline{A} \vdash \overline{A}}{\vdash A^{\perp}, A}^{I} \neg_{r}}{\vdash A \lor A^{\perp}, A} \lor_{r2} \\ \frac{\vdash A \lor A^{\perp}, A}{\vdash A \lor A^{\perp}} \lor_{r1}}{\vdash A \lor A^{\perp}} C_{r}$$

Truth

Intuitionistic Logic

$$\vdash A \qquad \vdash A^{\perp}$$
 $\vdash A \lor A^{\perp}$

Constructive proofs

Classical Logic

$$\frac{\frac{\overline{A} \vdash \overline{A}}{\vdash A^{\perp}, A} r_{r_{1}}}{\vdash A \lor A^{\perp}, A} \lor_{r_{2}} \\ \frac{\vdash A \lor A^{\perp}, A}{\vdash A \lor A^{\perp}} \lor_{r_{1}} \\ \vdash A \lor A^{\perp}, A \lor A^{\perp}} C_{r}$$

Truth

Intuitionistic Logic

Classical Logic

$$\frac{\overline{A} \vdash \overline{A}}{\vdash A^{\perp}, A} \xrightarrow{\neg_r} \\ \frac{\vdash A \lor A^{\perp}, A}{\vdash A \lor A^{\perp}, A} \xrightarrow{\lor_{r2}} \\ \frac{\vdash A \lor A^{\perp}, A \lor A^{\perp}}{\vdash A \lor A^{\perp}} \xrightarrow{C_r}$$

Truth

Intuitionistic Logic

Constructive proofs

Several different sequent calculus systems for these logics

One formula in the right-hand-side

Linear Logic

Formulas can no longer be used as many times as you want.

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form

exponentials ! ?

$$\frac{\vdash \Gamma, ?P, ?P}{\vdash \Gamma, ?P} \ C \quad \frac{\vdash \Gamma}{\vdash \Gamma, ?P} \ W$$

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form

exponentials ! ?

$$\frac{\vdash \Gamma, ?P, ?P}{\vdash \Gamma, ?P} \ C \quad \frac{\vdash \Gamma}{\vdash \Gamma, ?P} \ W$$

multiplicatives

additives

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form

exponentials ! ?

$$\frac{\vdash \Gamma, ?P, ?P}{\vdash \Gamma, ?P} \ C \quad \frac{\vdash \Gamma}{\vdash \Gamma, ?P} \ W$$

multiplicatives

additives

$$\frac{\vdash \Gamma, P \vdash \Delta, Q}{\vdash \Gamma, \Delta, P \otimes Q} \otimes$$

$$\frac{\vdash \Gamma, P \vdash \Gamma, Q}{\vdash \Gamma, P \& Q} \&$$

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form

exponentials ! ?

$$\frac{\vdash \Gamma, ?P, ?P}{\vdash \Gamma, ?P} \ C \quad \frac{\vdash \Gamma}{\vdash \Gamma, ?P} \ W$$

$$\frac{\vdash \Gamma, P \vdash \Delta, Q}{\vdash \Gamma, \Delta, P \otimes Q} \otimes$$

$$\frac{\vdash \Gamma, P \vdash \Gamma, Q}{\vdash \Gamma, P \& Q} \&$$

multiplicatives

additives

$$A \multimap B$$
 denotes $B \otimes A^{\perp}$

De Morgan dualities

$$\Gamma \vdash \Delta \qquad \qquad \vdash \Gamma^{\perp}, \Delta$$

Linear Logic

The logic behind logic

One can encode intuitionistic logic in linear logic

$$[P \supset Q] \equiv ![P] \multimap [Q]$$

Linear Logic

The logic behind logic

One can encode intuitionistic logic in linear logic

$$[P \supset Q] \qquad \equiv \qquad ![P] \multimap [Q]$$

Logic of resources

One can specify resources

$$\vdash$$
 ?(euro $^{\perp} \otimes$ coffee), euro

Agenda

■ Sequent Calculus

Focusing

- Tabled Deduction
- Algorithmic Specifications
- Logical Frameworks

Logic Programming – Search for cut-free proofs

Logic Programming – Search for cut-free proofs

Logic program

 $\forall x (\mathsf{path}\, x\, x) \ \forall x \forall y \forall z (\mathsf{arr}\, x\,\, z \land \mathsf{path}\,\, z\,\, y \supset \mathsf{path}\,\, x\,\, y)$

Query

path a_3 a_4

Normal form proofs for proof search

Normal form proofs for proof search

Negative Phase - All invertible rules are applied eagerly

$$\frac{\vdash \Theta : \Gamma \uparrow L, F, G}{\vdash \Theta : \Gamma \uparrow L, F \, \mathcal{V} \, G} \, \left[\, \mathcal{V} \, \right]$$

proofs for

proof search

Positive Phase – One formula is focused on

$$\frac{\vdash \Theta : \Gamma \Downarrow P}{\vdash \Theta : \Gamma, P \Uparrow} \ [D_1]$$

Focusing persists

$$\frac{\vdash \Theta : \Gamma \Downarrow F \quad \vdash \Theta : \Gamma' \Downarrow G}{\vdash \Theta : \Gamma, \Gamma' \Downarrow F \otimes G} \ [\otimes]$$

Negative Phase - All invertible rules are applied eagerly

$$\frac{\vdash \Theta : \Gamma \Uparrow L, F, G}{\vdash \Theta : \Gamma \Uparrow L, F \, {\mathfrak P} \, \, G} \, \left[\, {\mathfrak P} \, \right]$$

$$A \& B, A \ \Im B, \bot, \top, ?B, \forall x B$$

Negative Formulas

$$A \& B, A \ \Im B, \bot, \top, ?B, \forall x B$$

Negative Formulas

$$\frac{\vdash \Theta : \Gamma \uparrow L}{\vdash \Theta : \Gamma \uparrow L, \bot} \ [\bot]$$

$$\frac{\vdash \Theta : \Gamma \uparrow L, F, G}{\vdash \Theta : \Gamma \uparrow L, F \not \ni G} \ [\not \ni \] \qquad \frac{\vdash \Theta, F : \Gamma \uparrow L}{\vdash \Theta : \Gamma \uparrow L, ?F} \ [?]$$

$$\frac{\vdash \Theta, F : \Gamma \uparrow L}{\vdash \Theta : \Gamma \uparrow L, ?F} \ [?]$$

$$\frac{}{\vdash \Theta : \Gamma \Uparrow L, \top} \ [\top] \quad \frac{\vdash \Theta : \Gamma \Uparrow L, F \quad \vdash \Theta : \Gamma \Uparrow L, G}{\vdash \Theta : \Gamma \Uparrow L, F \& G} \ [\&] \quad \frac{\vdash \Theta : \Gamma \Uparrow L, F[c/x]}{\vdash \Theta : \Gamma \Uparrow L, \forall x \, F} \ [\forall]$$

All negative rules are invertible

 $A\otimes B, A\oplus B, 1, !\,B, \exists x\,B$

Positive Formulas

$$A \otimes B, A \oplus B, 1, !B, \exists x B$$

Positive Formulas

$$\frac{}{\vdash \Theta : \Downarrow 1} \ [1] \qquad \frac{\vdash \Theta : \Gamma \Downarrow F \quad \vdash \Theta : \Gamma' \Downarrow G}{\vdash \Theta : \Gamma, \Gamma' \Downarrow F \otimes G} \ [\otimes] \qquad \frac{\vdash \Theta : \Uparrow F}{\vdash \Theta : \Downarrow ! F} \ [!]$$

$$\frac{\vdash \Theta : \Gamma \Downarrow F}{\vdash \Theta : \Gamma \Downarrow F \oplus G} \ [\oplus_l] \qquad \frac{\vdash \Theta : \Gamma \Downarrow G}{\vdash \Theta : \Gamma \Downarrow F \oplus G} \ [\oplus_r] \qquad \frac{\vdash \Theta, F : \Gamma \Downarrow F[t/x]}{\vdash \Theta : \Gamma \Downarrow \exists x \, F} \ [\exists]$$

Positive rules are not necessarily invertible.

Structural Rules

$$\frac{\vdash \Theta : \Gamma \Uparrow N}{\vdash \Theta : \Gamma \Downarrow N} \ [R \Downarrow]$$

$$\frac{\vdash \Theta : \Gamma, S \Uparrow L}{\vdash \Theta : \Gamma \Uparrow L, S} \ [R \Uparrow]$$

$$\frac{\vdash \Theta : \Gamma \Downarrow P}{\vdash \Theta : \Gamma, P \Uparrow} \ [D_1]$$

$$\frac{\vdash \Theta, P : \Gamma \Downarrow P}{\vdash \Theta, P : \Gamma \Uparrow} [D_2]$$

Here, *N* is a negative formula, *P* is not a negative literal, and *S* is a positive formula or a literal.

Synthetic Connectives

$$\frac{\vdash \Theta : \Gamma \uparrow A_1}{\vdash \Theta : \Gamma \Downarrow A_1 \oplus (A_2 \otimes A_3)}$$

$$\frac{\vdash \Theta : \Gamma_1 \Uparrow A_2 \quad \vdash \Theta : \Gamma_2 \Uparrow A_3}{\vdash \Theta : \Gamma_1, \Gamma_2 \Downarrow A_1 \oplus (A_2 \otimes A_3)}$$

Synthetic Connectives

$$\frac{\vdash \Theta : \Gamma \uparrow \land A_1}{\vdash \Theta : \Gamma \downarrow A_1 \oplus (A_2 \otimes A_3)} \qquad \frac{\vdash \Theta : \Gamma_1 \uparrow \land A_2 \quad \vdash \Theta : \Gamma_2 \uparrow \land A_3}{\vdash \Theta : \Gamma_1, \Gamma_2 \downarrow \land A_1 \oplus (A_2 \otimes A_3)}$$

We can construct "macro-rules" that introduce the synthetic connectives of formulas.

Literals are arbitrarily classified as positive or negative

Literals are arbitrarily classified as positive or negative

$$\frac{}{\vdash \Theta : A_p^{\perp} \Downarrow A_p} \quad [I_1] \qquad \frac{}{\vdash \Theta , A_p^{\perp} : \Downarrow A_p} \quad [I_2]$$

Literals are arbitrarily classified as positive or negative

$$\frac{}{\vdash \Theta : A_p^{\perp} \Downarrow A_p} \quad [I_1] \qquad \frac{}{\vdash \Theta , A_p^{\perp} : \Downarrow A_p} \quad [I_2]$$

The Focusing Theorem states that a formula is provable in the focused system iff it is provable in linear logic. Does not matter how we assign the polarity of literals.

Fibonacci Program

$$fib(0,0) \wedge fib(1,1) \wedge$$

$$\forall n, f, f'[\operatorname{fib}(n, f) \supset \operatorname{fib}(n + 1, f') \supset \operatorname{fib}(n + 2, f + f')].$$

To prove

$$\Gamma \longrightarrow \mathrm{fib}(n,N).$$

Fibonacci Program

$$fib(0,0) \wedge fib(1,1) \wedge$$

$$\forall n, f, f'[\operatorname{fib}(n, f) \supset \operatorname{fib}(n + 1, f') \supset \operatorname{fib}(n + 2, f + f')].$$

To prove

$$\Gamma \longrightarrow \mathrm{fib}(n,N).$$

fib atoms as negative

there is a unique focused proof of size exponential in *n* (goal-directed, backchaining)

Fibonacci Program

$$fib(0,0) \wedge fib(1,1) \wedge$$

$$\forall n, f, f'[\operatorname{fib}(n, f) \supset \operatorname{fib}(n + 1, f') \supset \operatorname{fib}(n + 2, f + f')].$$

To prove

$$\Gamma \longrightarrow \mathrm{fib}(n,N).$$

fib atoms as negative

there is a unique focused proof of size exponential in *n* (goal-directed, backchaining)

fib atoms as positive

there are infinitely many proofs and the smallest one is of linear size in *n* (program-directed, forward-chaining).

Fibonacci Program

$$fib(0,0) \wedge fib(1,1) \wedge$$

$$\forall n, f, f'[\operatorname{fib}(n, f) \supset \operatorname{fib}(n + 1, f') \supset \operatorname{fib}(n + 2, f + f')].$$

To prove

$$\Gamma \longrightarrow \mathrm{fib}(n,N).$$

fib atoms as negative

there is a unique focused proof of size exponential in *n* (goal-directed, backchaining)

fib atoms as positive

there are infinitely many proofs and the smallest one is of linear size in *n* (program-directed, forward-chaining).

While choices in the polarization of atoms **do not affect provability**, it can have important consequences on the **shape of proofs**.

Agenda

- Sequent Calculus
- Focusing

■ Tabled Deduction

- Algorithmic Specifications
- Logical Frameworks

 $\forall x (\mathbf{path} \ x \ x)$ $\forall x \forall y \forall z (arr \ x \ z \land \mathbf{path} \ z \ y \supset \mathbf{path} \ x \ y)$

path $a_1 \ a_4 \wedge \mathbf{path} \ a_2 \ a_4$

 $\forall x (\mathbf{path} \ x \ x)$ $\forall x \forall y \forall z (arr \ x \ z \land \mathbf{path} \ z \ y \supset \mathbf{path} \ x \ y)$

path $a_1 \ a_4 \wedge \mathbf{path} \ a_2 \ a_4$

Common Subgoal

path a_3 a_4

• In Prolog, this common subgoal is computed twice.

 $\forall x (\mathbf{path} \ x \ x)$ $\forall x \forall y \forall z (arr \ x \ z \land \mathbf{path} \ z \ y \supset \mathbf{path} \ x \ y)$

path a_2 a_5

Two paths:

 One is an expensive failure and the other an easy success

Introduce the common subgoal with a cut

$$\frac{\Gamma \vdash A \qquad A, \Gamma \vdash A \land G}{\Gamma \vdash A \land G}$$

Introduce the common subgoal with a cut

$$\frac{\Gamma \vdash A \qquad A, \Gamma \vdash A \land G}{\Gamma \vdash A \land G}$$

Another example (without cuts)

Change to an equivalent goal:

$$A \wedge G \equiv A \wedge (A \supset G)$$

Introduce the common subgoal with a cut

$$\frac{\Gamma \vdash A \qquad A, \Gamma \vdash A \land G}{\Gamma \vdash A \land G}$$

Another example (without cuts)

Change to an equivalent goal:

$$A \wedge G \equiv A \wedge (A \supset G)$$

But we are only increasing non-determinism:

- There are now more proofs for the goal;
- How to give a purely proof theoretic solution where common subgoals aren't reproven see Chapter 3 of my thesis.

Agenda

- Sequent Calculus
- Focusing
- Tabled Deduction
- Algorithmic Specifications
- Logical Frameworks

Horn Theory (hHf)

$$\Gamma_1 = \Gamma_2 \quad (\Gamma_1 \subseteq \Gamma_2)$$

 Δ_1, Δ_2 are atomic

Horn Theory (hHf)

$$\Gamma_1 = \Gamma_2 \quad (\Gamma_1 \subseteq \Gamma_2)$$

 Δ_1, Δ_2 are atomic

Computation in level of terms:

min(X::nil,X).

min(X :: L, Y) : -X > Y, min(L, Y)

min(X :: L, X) : -X <= Y, min(L, Y)

Linear Logic

$$\Gamma_1, \Gamma_2, \Delta_1, \Delta_2$$
 are multisets.

Linear Logic

$$\Gamma_1, \Gamma_2, \Delta_1, \Delta_2$$
 are multisets.

A representation of a graph:

$$\begin{split} N &= \{ \mathsf{node} \; x \mid x \in \mathcal{N} \} \\ A &= \{ \mathsf{adj} \, x \; y \mid \langle x, y \rangle \in \mathcal{A} \} \\ &\vdash N, A \end{split}$$

Linear Logic

$$\Gamma_1, \Gamma_2, \Delta_1, \Delta_2$$
 are multisets.

A representation of a graph:

$$N = \{ \mathsf{node} \ x \mid x \in \mathcal{N} \}$$
 $A = \{ \mathsf{adj} \ x \ y \mid \langle x, y \rangle \in \mathcal{A} \}$ $\vdash N, A$

How to check that only the set *N* is empty?

Linear Logic

$$\Gamma_1, \Gamma_2, \Delta_1, \Delta_2$$
 are multisets.

A representation of a graph:

$$N = \{ \mathsf{node}\ x \mid x \in \mathcal{N} \}$$
 $A = \{ \mathsf{adj}\ x\ y \mid \langle x, y \rangle \in \mathcal{A} \}$ $\vdash N, A$

How to check that only the set *N* is empty?

Not so easy!

We are able to check if the **whole** linear context is empty:

$$\frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A}$$
 [!]

Linear Logic

$$\Gamma_1, \Gamma_2, \Delta_1, \Delta_2$$
 are multisets.

A representation of a graph:

$$\begin{split} N &= \{ \mathsf{node} \; x \mid x \in \mathcal{N} \} \\ A &= \{ \mathsf{adj} \, x \; y \mid \langle x, y \rangle \in \mathcal{A} \} \\ &\vdash N, A \end{split}$$

How to check that only the set *N* is empty?

Not so easy!

We are able to check if the **whole** linear context is empty:

$$\frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A}$$
 [!]

We need local contexts.
We need subexponentials.

?b,!b ?r,!r

$$?^{\mathsf{b}}, !^{\mathsf{b}} ?^{\mathsf{r}}, !^{\mathsf{r}}$$
 $\mathsf{not} \ \mathsf{provable}$
 $!^{\mathsf{b}}F \equiv !^{\mathsf{r}}F ?^{\mathsf{b}}F \equiv ?^{\mathsf{r}}F$

$$?^{b},!^{b}$$
 $?^{r},!^{r}$
not provable
 $!^{b}F \equiv !^{r}F$ $?^{b}F \equiv ?^{r}F$

Subexp Signature
$$\langle I, \preceq, \mathcal{W}, \mathcal{C}
angle$$

 \mathcal{W} and \mathcal{C} are up. closed under \leq

$$?^{b},!^{b}$$
 $?^{r},!^{r}$ not provable $!^{b}F \equiv !^{r}F$ $?^{b}F \equiv ?^{r}F$

Subexp Signature
$$\langle I, \preceq, \mathcal{W}, \mathcal{C}
angle$$

 \mathcal{W} and \mathcal{C} are up. closed under \leq

$$y \in \mathcal{C} \text{ and } z \in \mathcal{W}$$

$$\frac{\vdash C, \Delta}{\vdash ?^{\mathsf{X}}C, \Delta} \ D \quad \frac{\vdash ?^{\mathsf{y}}C, ?^{\mathsf{y}}C, \Delta}{\vdash ?^{\mathsf{y}}C, \Delta} \ C \quad \frac{\vdash, \Delta}{\vdash ?^{\mathsf{z}}C, \Delta} \ W$$

Subexponentials

$$?^{\mathsf{b}},!^{\mathsf{b}}$$
 $?^{\mathsf{r}},!^{\mathsf{r}}$ not provable $!^{\mathsf{b}}F \equiv !^{\mathsf{r}}F$ $?^{\mathsf{b}}F \equiv ?^{\mathsf{r}}F$

Subexp Signature
$$\langle I, \preceq, \mathcal{W}, \mathcal{C}
angle$$

 \mathcal{W} and \mathcal{C} are up. closed under \leq

$$y \in \mathcal{C} \text{ and } z \in \mathcal{W}$$

$$\frac{\vdash C, \Delta}{\vdash ?^{\mathsf{X}}C, \Delta} \ D \quad \frac{\vdash ?^{\mathsf{y}}C, ?^{\mathsf{y}}C, \Delta}{\vdash ?^{\mathsf{y}}C, \Delta} \ C \quad \frac{\vdash, \Delta}{\vdash ?^{\mathsf{z}}C, \Delta} \ W$$

$$\frac{\vdash ?^{x_1}C_1,\ldots,?^{x_n}C_n,C}{\vdash ?^{x_1}C_1,\ldots,?^{x_n}C_n,!^aC} \ !^a \text{ we can now check if a subset is empty}$$

$$a \leq x_i \text{ for all } i = 1, \dots, n$$

Focused proof search yields algorithmic specification

- (partial) computation runs are in 1-1 correspondence to (open) focused derivations: non-determinism in both can be made to match exactly.
- No external interpreter required: The proof theory of focused proof search is sophisticated enough to provide what is needed.

Controlling the size of focusing phases seems to be the key observation: global choice and local choice operators

Focused proof search yields algorithmic specification

- (partial) computation runs are in 1-1 correspondence to (open) focused derivations: non-determinism in both can be made to match exactly.
- No external interpreter required: The proof theory of focused proof search is sophisticated enough to provide what is needed.

Controlling the size of focusing phases seems to be the key observation: global choice and local choice operators

Agenda

- Sequent Calculus
- Focusing
- Tabled Deduction
- Algorithmic Specifications
- **Logical Frameworks**

Overview

One specification

 \mathcal{L}

Some logical equivalences

$$F \equiv F'$$

Overview

Several

Systems

Encoding Logics

We consider only (first-order) minimal, intuitionistic and classical object logics.

Encoding Logics

We consider only (first-order) minimal, intuitionistic and classical object logics.

Encoding Formulas

- Sequent Calculus Left / Right
- Natural Deduction Hyp / Con
- Tableaux Neg / Pos

ML

form $\rightarrow o$

Encoding Logics

We consider only (first-order) minimal, intuitionistic and classical object logics.

Encoding Formulas

Encoding Sequents

OL

- Sequent Calculus Left / Right
- Natural Deduction Hyp / Con
- Tableaux Neg / Pos

ML

 $\lfloor \cdot \rfloor \quad | \cdot | \quad \text{form} \rightarrow o$

$$B_1,\ldots,B_n\vdash C_1,\ldots,C_m$$

$$\vdash \lfloor B_1 \rfloor, \ldots, \lfloor B_n \rfloor, \lceil C_1 \rceil, \ldots, \lceil C_m \rceil$$

Theory \mathcal{L} with the meaning of connectives – Existential Closure of

$$(\Rightarrow_{L}) \quad [A \Rightarrow B]^{\perp} \otimes (\lceil A \rceil \otimes \lfloor B \rfloor) \quad (\Rightarrow_{R}) \quad [A \Rightarrow B]^{\perp} \otimes (\lfloor A \rfloor \otimes \lceil B \rceil)$$

$$(\land_{L}) \quad [A \land B]^{\perp} \otimes (\lfloor A \rfloor \oplus \lfloor B \rfloor) \quad (\land_{R}) \quad [A \land B]^{\perp} \otimes (\lceil A \rceil \& \lceil B \rceil)$$

$$(\forall_{L}) \quad [\forall B]^{\perp} \otimes [Bx] \quad (\forall_{R}) \quad [\forall B]^{\perp} \otimes \forall x \lceil Bx \rceil$$

$$(\perp_{L}) \quad [\perp]^{\perp} \quad (t_{R}) \quad [t]^{\perp} \otimes \top$$

Theory \mathcal{L} with the meaning of connectives –

Existential Closure of

and the structural and identity rules

Theory \mathcal{L} with the meaning of connectives – Existential Closure of

 $(\Rightarrow_{L}) \quad [A \Rightarrow B]^{\perp} \otimes (\lceil A \rceil \otimes \lfloor B \rfloor) \quad (\Rightarrow_{R}) \quad [A \Rightarrow B]^{\perp} \otimes (\lfloor A \rfloor \otimes \lceil B \rceil)$ $(\land_{L}) \quad [A \land B]^{\perp} \otimes (\lfloor A \rfloor \oplus \lfloor B \rfloor) \quad (\land_{R}) \quad [A \land B]^{\perp} \otimes (\lceil A \rceil \& \lceil B \rceil)$ $(\forall_{L}) \quad [\forall B]^{\perp} \otimes [Bx] \quad (\forall_{R}) \quad [\forall B]^{\perp} \otimes \forall x \lceil Bx \rceil$ $(\downarrow_{L}) \quad [\perp]^{\perp} \quad (t_{R}) \quad [t]^{\perp} \otimes \top$

and the structural and identity rules

$$egin{array}{llll} (\operatorname{Id}_1) & \lfloor B
floor^\perp \otimes \lceil B
floor^\perp & (\operatorname{Id}_2) & \lfloor B
floor \otimes \lceil B
ceil \ (\operatorname{Str}_L) & \lfloor B
floor^\perp \otimes ? \lfloor B
floor & (\operatorname{Str}_R) & \lceil B
ceil^\perp \otimes ? \lceil B
ceil \ (W_R) & \lceil C
ceil^\perp \otimes \bot \end{array}$$

$$(\Rightarrow'_L) \mid A \Rightarrow B \mid^{\perp} \otimes (! \lceil A \rceil \otimes |B|) \qquad (\mathbf{Id}'_2) \mid B \mid \otimes ! \lceil B \rceil$$

Duality of the $|\cdot|$ and $\lceil \cdot \rceil$ atoms

$$\vdash \forall B(\lceil B \rceil \equiv \lfloor B \rfloor^{\perp}) \& \forall B(\lfloor B \rfloor \equiv \lceil B \rceil^{\perp}), \mathbf{Id}_1, \mathbf{Id}_2$$

with Str_L and Str_R we prove the equivalences:

$$\lfloor B \rfloor \equiv ? \lfloor B \rfloor \text{ and } \lceil B \rceil \equiv ? \lceil B \rceil$$

Levels of Adequacy

We identify three levels of adequacy:

- Relative completeness: comparisons deal only with provability: the two systems have the same theorems.
- Full completeness of proofs: comparisons deal with proof objects: the proofs of a given formula are in one-to-one correspondence with proofs in another system.
- Full completeness of derivations: comparisons deal with derivations (*i.e.*, open proofs, such as inference rules themselves): the derivations in one system are in one-to-one correspondence with those in another system.

Levels of Adequacy

We identify three levels of adequacy:

- Relative completeness: comparisons deal only with provability: the two systems have the same theorems.
- Full completeness of proofs: comparisons deal with proof objects: the proofs of a given formula are in one-to-one correspondence with proofs in another system.
- Full completeness of derivations: comparisons deal with derivations (*i.e.*, open proofs, such as inference rules themselves): the derivations in one system are in one-to-one correspondence with those in another system.

We always obtain adequacy on the level of derivations.

if all $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$ (meta-level) atoms are negative

1)
$$\Gamma \vdash_{lm} C$$
 iff $\vdash \mathcal{L}_{lm}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$

2)
$$\Gamma \vdash_{lj} C$$
 iff $\vdash \mathcal{L}_{lj}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$

3)
$$\Gamma \vdash_{lk} \Delta \text{ iff } \vdash \mathcal{L}_{lk}, \lfloor \Gamma \rfloor, \lceil \Delta \rceil : \uparrow$$

if all [·] and [·] (meta-level) atoms are negative

- 1) $\Gamma \vdash_{lm} C$ iff $\vdash \mathcal{L}_{lm}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$
- 2) $\Gamma \vdash_{lj} C$ iff $\vdash \mathcal{L}_{lj}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$
- 3) $\Gamma \vdash_{lk} \Delta \text{ iff } \vdash \mathcal{L}_{lk}, |\Gamma|, \lceil \Delta \rceil : \uparrow$

$$egin{aligned} \mathcal{L}_{lk} &= \mathcal{L} \cup \{ \operatorname{Id}_1, \operatorname{Id}_2, \operatorname{Str}_L, \operatorname{Str}_R \}, \ \mathcal{L}_{lm} &= \mathcal{L} \cup \{ \operatorname{Id}_1, \operatorname{Id}_2', \operatorname{Str}_L, \Rightarrow_L' \} \setminus \{ \bot_L, \Rightarrow_L \}, \ \mathcal{L}_{lj} &= \mathcal{L} \cup \{ \operatorname{Id}_1, \operatorname{Id}_2', \operatorname{Str}_L, \Rightarrow_L', W_R \} \setminus \{ \Rightarrow_L \}, \end{aligned}$$

if all $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$ (meta-level) atoms are negative

1)
$$\Gamma \vdash_{lm} C$$
 iff $\vdash \mathcal{L}_{lm}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$

2)
$$\Gamma \vdash_{lj} C$$
 iff $\vdash \mathcal{L}_{lj}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$

3)
$$\Gamma \vdash_{lk} \Delta \text{ iff } \vdash \mathcal{L}_{lk}, |\Gamma|, \lceil \Delta \rceil : \uparrow$$

$$egin{aligned} \mathcal{L}_{lk} &= \mathcal{L} \cup \{ \mathbf{Id}_1, \mathbf{Id}_2, \mathsf{Str}_L, \mathsf{Str}_R \}, \ \mathcal{L}_{lm} &= \mathcal{L} \cup \{ \mathbf{Id}_1, \mathbf{Id}_2', \mathsf{Str}_L, \Rightarrow_L' \} \setminus \{ \perp_L, \Rightarrow_L \}, \ \mathcal{L}_{lj} &= \mathcal{L} \cup \{ \mathbf{Id}_1, \mathbf{Id}_2', \mathsf{Str}_L, \Rightarrow_L', W_R \} \setminus \{ \Rightarrow_L \}, \end{aligned}$$

We can also obtain a adequacy up to the level of derivations. For intuitionistic and minimal logics the ! is important.

$$\frac{\Gamma, A \Rightarrow B \vdash A \qquad \Gamma, A \Rightarrow B, B \vdash C}{\Gamma, A \Rightarrow B \vdash C}$$

$$\frac{\Gamma, A \Rightarrow B \vdash A \qquad \Gamma, A \Rightarrow B, B \vdash C}{\Gamma, A \Rightarrow B \vdash C}$$

$$\frac{ \left| \begin{array}{c} \vdash \mathcal{K} : \lceil A \rceil \uparrow \\ \vdash \mathcal{K} : \Downarrow \mid \lceil A \rceil \end{array} \right| \cdot \left| \begin{array}{c} \vdash \mathcal{K} : \lfloor B \rfloor, \lceil C \rceil \uparrow \\ \vdash \mathcal{K} : \Downarrow \mid \lceil A \rceil \end{array} \right| \cdot \left| \begin{array}{c} \vdash \mathcal{K} : \lfloor B \rfloor, \lceil C \rceil \uparrow \\ \vdash \mathcal{K} : \lceil C \rceil \Downarrow \mid \lceil A \rceil \otimes \lfloor B \rfloor \end{array} \right| \left| \begin{array}{c} \mid \mathcal{K} \mid \mathcal{K}$$

 $F \text{ is } \exists A \exists B \lfloor A \Rightarrow B \rfloor^{\perp} \otimes (\lceil A \rceil \otimes \lfloor B \rfloor)_{gg}$

$$\frac{\Gamma, A \Rightarrow B \vdash A \qquad \Gamma, A \Rightarrow B, B \vdash C}{\Gamma, A \Rightarrow B \vdash C}$$

$$[A \Rightarrow B] \in \mathcal{K}$$
is enforced
$$\frac{\vdash \mathcal{K} : \lceil A \rceil \uparrow}{\vdash \mathcal{K} : \downarrow \mid \lceil A \rceil} [!, R \uparrow] \qquad \frac{\vdash \mathcal{K} : \lfloor B \rfloor, \lceil C \rceil \uparrow}{\vdash \mathcal{K} : \lceil C \rceil \downarrow \mid \lfloor B \rfloor} [R \downarrow, R \uparrow]
}{\vdash \mathcal{K} : \lceil C \rceil \downarrow \mid \mid \lceil A \rceil \otimes \lfloor B \rfloor} [\otimes]$$

$$\frac{\vdash \mathcal{K} : \lceil C \rceil \downarrow \mathcal{F}}{\vdash \mathcal{K} : \lceil C \rceil \uparrow} [D_2]$$

 $F \text{ is } \exists A \exists B [A \Rightarrow B]^{\perp} \otimes (\lceil A \rceil \otimes \lfloor B \rfloor)_{100}$

$$\begin{array}{c|c} \Gamma, A \Rightarrow B \vdash A & \Gamma, A \Rightarrow B, B \vdash C \\ \hline \Gamma, A \Rightarrow B \vdash C & \text{to the right branch} \\ [A \Rightarrow B] \in \mathcal{K} \\ \text{is enforced} & \\ \hline \\ \vdash \mathcal{K} : \Downarrow [A \Rightarrow B]^{\perp} & \hline \\ [I_2] & \frac{\vdash \mathcal{K} : \lceil A \rceil \Uparrow}{\vdash \mathcal{K} : \Downarrow !\lceil A \rceil} \; [!, R \Uparrow] \; \frac{\vdash \mathcal{K} : \lfloor B \rfloor, \lceil C \rceil \Uparrow}{\vdash \mathcal{K} : \lceil C \rceil \Downarrow \lfloor B \rfloor} \; [R \Downarrow, R \Uparrow] \\ \hline \\ \vdash \mathcal{K} : \lceil C \rceil \Downarrow F \; [D_2] \\ \hline \\ \vdash \mathcal{K} : \lceil C \rceil \Uparrow \; [D_2] \end{array}$$

 $F \text{ is } \exists A \exists B [A \Rightarrow B]^{\perp} \otimes ([A] \otimes [B])$

Cut free proofs – remove the clause (ID₂) from the theory:

Cut free proofs – remove the clause (ID₂) from the theory:

if all $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$ (meta-level) atoms are negative

1)
$$\Gamma \vdash_{lm}^{f} C$$
 iff $\vdash \mathcal{L}_{lm}^{f}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$
2) $\Gamma \vdash_{lj}^{f} C$ iff $\vdash \mathcal{L}_{lj}^{f}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$
3) $\Gamma \vdash_{lk}^{f} \Delta$ iff $\vdash \mathcal{L}_{lk}^{f}, \lfloor \Gamma \rfloor, \lceil \Delta \rceil : \uparrow$

It is possible to obtain an adequacy on the level of derivations.

Natural Deduction [Sieg, Byrnes, 1998]

$$\frac{\Gamma}{\Gamma, A \vdash_{nd} A \downarrow} [I] \quad \frac{\Gamma \vdash_{nd} F \uparrow \quad \Gamma \vdash_{nd} G \uparrow}{\Gamma \vdash_{nd} F \land G \uparrow} [\land I] \quad \frac{\Gamma \vdash_{nd} F \land G \downarrow}{\Gamma \vdash_{nd} F \downarrow} [\land E]$$

$$\frac{\Gamma, A \vdash_{nd} B \uparrow}{\Gamma \vdash_{nd} A \Rightarrow B \uparrow} [\Rightarrow I] \quad \frac{\Gamma \vdash_{nd} A \Rightarrow B \downarrow \quad \Gamma \vdash_{nd} A \uparrow}{\Gamma \vdash_{nd} B \downarrow} [\Rightarrow E] \quad \frac{\Gamma \vdash_{nd} f \uparrow}{\Gamma \vdash_{nd} f \uparrow} [tI]$$

$$\frac{\Gamma \vdash_{nd} A \{c/x\} \uparrow}{\Gamma \vdash_{nd} \forall x A \uparrow} [\forall I] \quad \frac{\Gamma \vdash_{nd} \forall x A \downarrow}{\Gamma \vdash_{nd} A \{t/x\} \downarrow} [\forall E] \quad \frac{\Gamma \vdash_{nd} A \downarrow}{\Gamma \vdash_{nd} A \uparrow} [M] \quad \frac{\Gamma \vdash_{nd} A \uparrow}{\Gamma \vdash_{nd} A \downarrow} [S]$$

Natural Deduction [Sieg, Byrnes, 1998]

$$\frac{\Gamma, A \vdash_{nd} A \downarrow}{\Gamma, A \vdash_{nd} A \downarrow} [I] \quad \frac{\Gamma \vdash_{nd} F \uparrow \quad \Gamma \vdash_{nd} G \uparrow}{\Gamma \vdash_{nd} F \land G \uparrow} [\land I] \quad \frac{\Gamma \vdash_{nd} F \land G \downarrow}{\Gamma \vdash_{nd} F \downarrow} [\land E]$$

$$\frac{\Gamma, A \vdash_{nd} B \uparrow}{\Gamma \vdash_{nd} A \Rightarrow B \uparrow} [\Rightarrow I] \quad \frac{\Gamma \vdash_{nd} A \Rightarrow B \downarrow}{\Gamma \vdash_{nd} B \downarrow} \quad [\Rightarrow E] \quad \frac{\Gamma \vdash_{nd} f \uparrow}{\Gamma \vdash_{nd} f \uparrow} [tI]$$

$$\frac{\Gamma \vdash_{nd} A \{c/x\} \uparrow}{\Gamma \vdash_{nd} \forall x A \uparrow} [\forall I] \quad \frac{\Gamma \vdash_{nd} \forall x A \downarrow}{\Gamma \vdash_{nd} A \{t/x\} \downarrow} [\forall E] \quad \frac{\Gamma \vdash_{nd} A \downarrow}{\Gamma \vdash_{nd} A \uparrow} [M] \quad \frac{\Gamma \vdash_{nd} A \uparrow}{\Gamma \vdash_{nd} A \downarrow} [S]$$

$$\Gamma \vdash_{nd} C \uparrow$$

$$\Gamma \vdash_{nd} C \downarrow$$

Useful to identify normal proofs, where the S rules is not allowed.

$$\vdash \Sigma, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$$

$$\vdash \Sigma, \lfloor \Gamma \rfloor : \lfloor C \rfloor^{\perp} \Uparrow$$

Natural Deduction – including normal forms

if all $[\cdot]$ (meta-level) atoms are negative if all $[\cdot]$ (meta-level) atoms are positive

1)
$$\Gamma \vdash_{nj} C \uparrow$$
 iff $\vdash \mathcal{L}_{lj}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$
2) $\Gamma \vdash_{nj}^{n} C \uparrow$ iff $\vdash \mathcal{L}_{lj}^{f}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$
3) $\Gamma \vdash_{nj}^{n} C \downarrow$ iff $\vdash \mathcal{L}_{lj}^{f}, \lfloor \Gamma \rfloor : \lfloor C \rfloor^{\perp} \uparrow$

An adequacy on the level of derivations can also be obtained.

Natural Deduction – including normal forms

if all $\lceil \cdot \rceil$ (meta-level) atoms are negative if all | · | (meta-level) atoms are positive

1)
$$\Gamma \vdash_{nj} C \uparrow \text{ iff } \vdash \mathcal{L}_{lj}, \lfloor \Gamma \rfloor : \lceil C \rceil \uparrow$$

2)
$$\Gamma \vdash_{nj}^{n} C \uparrow$$
 iff $\vdash \mathcal{L}_{lj}^{f}, [\Gamma] : [C] \uparrow$
3) $\Gamma \vdash_{nj}^{n} C \downarrow$ iff $\vdash \mathcal{L}_{lj}^{f}, [\Gamma] : [C]^{\perp} \uparrow$

3)
$$\Gamma dash_{nj}^n C \!\downarrow ext{ iff } dash \mathcal{L}_{lj}^f, \lfloor \Gamma
floor : \lfloor C
floor^\perp \Uparrow$$

An adequacy on the level of derivations can also be obtained.

Since the polarity assignment a focused system does not affect provability, we obtain the following relative completeness result for free:

Corollary

$$\Gamma \vdash_{lj} C \text{ iff } \Gamma \vdash_{nj} C \text{ and } \Gamma \vdash_{lj}^f C \text{ iff } \Gamma \vdash_{nj}^n C.$$

Cut now becomes Switch Rule:

$$\frac{\Gamma \vdash_{nd} C \uparrow}{\Gamma \vdash_{nd} C \downarrow} [S]$$

Other proof systems

In Chapter 4, we also deal with:

- Systems with generalized elimination and introduction rules
- the KE tableaux of D'Agostino and Mondadori, and
- a proof system of Smullyan with many axioms and with cut as the only inference rule.

My Thesis

Exploiting non-canonicity in the Sequent Calculus

- Polarity assignment of literals in focused systems
- Linear logic's exponentials

- Tabled deduction
- Logical frameworks
- Algorithmic specifications