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Sequent Calculus
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Cut-elimination
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Cut-elimination

New formula in the

i "l proof. Use of a Lemma.
I''+-P A, Ty PFHA, o
u
A1. A
Iy, o B A, A Consequences
1) Consistency
Proof with Cuts Cut-free Proof
- P - Pt
U U 2) Subformula Prop.
v v No need for Lemmas
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From classical to intuitionistic and linear logics

aral
| | -AN A
Classical Logic AV AL A r2\/ Truth
- AvAL Aval T
Cr
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From classical to intuitionistic and linear logics

aral
,
- AL A v
. . 5
Classical Logic AV AL A T Truth
1 T Vrl
AV AL AV A
1 Cr
AV A
L . | - A+ .
Intuitionistic Logic A A Constructive
proofs
AV AL
Several different sequent calculus _ One formula in the

systems for these logics right-nand-side

22



Defense

From classical to intuitionistic and linear logics

Linear Logic

Formulas can no longer be used as many times as you want.

23



Defense

From classical to intuitionistic and linear logics

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form

exponentials | ?

~DIPP L ET
- T,7P - T,7P

|44

24



Defense

From classical to intuitionistic and linear logics

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form

exponentials | ?

- T.?7P, 7P - T

r72p ¢ FL.7P

|44

> D V8 &
o —

multiplicatives

additives

25



Defense

From classical to intuitionistic and linear logics

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form 0
exponentials | ? 5 1 multiplicatives
~I,7P,7P - T D T
rop ¢ Frop W o (| 2ddives
FIP FAQ .
FTAPRQ
TP F1,Q

" T.P&Q Y

26



Defense

From classical to intuitionistic and linear logics

Linear Logic

Formulas can no longer be used as many times as you want.

No canonical form 0
exponentials | ? 5 1 multiplicatives
=1,7P,7P =T o T
rop ¢ Frop W o (| 2ddives
=1, P I—A,Q@ A —o B denotes B A+
FLLA PR De Morgan dualities
~LE FLQ LFA FT A
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From classical to intuitionistic and linear logics

Linear Logic

The logic behind logic

One can encode intuitionistic logic in linear logic

PoQ = P —o[Q

Logic of resources

One can specify resources

- ?(euro- ® coffee), euro
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Logic Programming — Search for cut-free proofs

Logic program
Vz(pathx x)
\Fl = Al/ VaVyVz(amrz z A path z y D path x y)

Query

path as Qaq4
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Focusing

Negative Phase - All invertible rules
are applied eagerly
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proofs for FO: 'L, F? G

proof search
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Focusing

Positive Phase — One formula is

focused on
~O:T | P
\ /% ~6.T,pf P
/ Focusing persists
\ / ~FO:T|F FO:T'|G

()]

FO: NIV FRG

Negative Phase - All invertible rules
are applied eagerly

Normal form Oy G (B ]

proofs for FO: TN L,F?G

proof search
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Focusing Basics

A& B,ARB, 1, T,7B,Vx B Negative Formulas
FO:I'{ L n FeO:I'ML,F,G FO,F:1T'{L 0
—6.T 1L L —6.T1LF5G %) Te.rqLF

FeO: 'YL, F FO:I'L,G

FO:T'f L, Flc/x]
I—@:I‘ﬂL,T[T] FO:I'NML, F&G

F@:T N L,Vz F |

&]

All negative rules are invertible
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Focusing Basics
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Focusing Basics

AR B, A® B,1,!B,dx B Positive Formulas

. Fe:T'|| F l—@:F’lLG[@)] O F
I—@:Ul[] FO:I'I" || F®G I—G):l}!FH
FO:T' | F FO: TG FO,F: T | Flt/z] .
—6o.TyFaC % Fo.ryreog @ 6. TyJF

Positive rules are not necessarily invertible.
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Focusing Basics

Structural Rules

FO:I'fN FO:I,S L
F@:FUN[RU] I—G):FﬂL,S[Rm
FO:I'|| P —FO,P:T"| P
~6.T,pf 1 ~o,p.T§ P2

Here, N Is a negative formula, P is not a negative literal, and S
IS a positive formula or a literal.
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Focusing Basics

Synthetic Connectives

F@FﬂAl I—@:I‘lﬂAg F@ZFQﬂAg
F@PUAl@(AQ(X)Ag) |_@ZF1,F2UA1€D(A2®A3)

We can construct “macro-rules” that introduce the synthetic
connectives of formulas.
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Focusing Basics

Literals are arbitrarily classified as positive or negative

111 ] 12
-0 AL | A, -~ 0, AL 1 A,

The Focusing Theorem states that a formula is provable in the
focused system iff it is provable in linear logic. Does not matter
how we assign the polarity of literals.
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Fibonaci Program

fib(0,0) A fib(1,1) A
vn, f, f'lfib(n, f) D fib(n + 1, ') D fib(n + 2, f + f')].

' — fib(n, N).
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Fibonaci Program

fib(0,0) A fib(1,1) A
Vn, f, f'lfib(n, f) D fib(n + 1, f) D fib(n + 2, f + f')].

' — fib(n, N).

there is a unique focused proof there are infinitely many proofs
of size exponential in n (goal- and the smallest one Is of linear
directed, backchaining) size in n (program-directed,
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Playing with polarities

fib(0,0) A fib(1,1) A
Vn, f, f'lfib(n, f) D fib(n + 1, f) D fib(n + 2, f + f')].

' — fib(n, N).

there is a unique focused proof there are infinitely many proofs
of size exponential in n (goal- and the smallest one Is of linear
directed, backchaining) size in n (program-directed,

forward-chaining).

While choices in the polarization of atoms do not affect provability, it can
have important conseguences on the shape of proofs.
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Qs

Vz(pathz z)
VaVyVz(arr x z A path z y D path z y)

path a1 aq N\ path a9 Ay
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YN
ag aq
N4
a3 " a4
Ao
U

Common Subgoal

Vz(pathz z)
VaVyVz(arr x z A path z y D path z y) pa_th as aq

* In Prolog, this common
subgoal is computed

path ay aq N\ path ao Ay twice.

54



Defense

YN
ag aq
N4
as - a,
L)
U

Two paths:
Vz(pathz z)
VaVyVz(arr x z A path z y D path z y)

* One is an expensive
fallure and the other an

easy SUCCess

path as as
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 Introduce the common subgoal with
a cut

A ATFAAG
THFAAG
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Another example (without cuts)

 Introduce the common subgoal with _
a cut  Change to an equivalent goal:

rrd4  ATFAAG ANG =AN(ADG)
I'FANG
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How to avoid this declaratively:

Another example (without cuts)

e Introduce the common subgoal with _
a cut  Change to an equivalent goal:

rrd4  ATFAAG ANG =AN(ADG)
I'FANG

But we are only increasing non-determinism:
 There are now more proofs for the goal;

« How to give a purely proof theoretic solution where common subgoals aren’t re-
proven see Chapter 3 of my thesis.
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Logic Programming - Dynamics of Proof Search

Horn Theory (hHf)

\ I's F Ay /A ' =Iy (I'iCTy)
A1, Ay are atomic
oo/
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Logic Programming - Dynamics of Proof Search

Horn Theory (hHf)

\ I's E As //\ I'y=1% (Plgrg)

A1, Ay are atomic

\Fl = Al/
Computation in level of terms:

min(X ::nil, X).
min(X = L,Y): =X >Y min(L,Y)
min(X =L, X): =X <=Y,min(L,Y)
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Logic Programming - Dynamics of Proof Search

Linear Logic

I'v,I'2, A1, Ay

are multisets.
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Logic Programming - Dynamics of Proof Search

Linear Logic

I'v,I'2, A1, Ay

are multisets.

A representation of a graph:

N ={node z |z € N'}
A={adjz y | (z,y) € A}

- N, A
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Logic Programming - Dynamics of Proof Search

Linear Logic How to check that only the
set N is empty?

I'v,I'2, A1, Ay

are multisets.

A representation of a graph:

N ={nodez |z € N}
A={adjz y | (z,y) € A}

- N, A
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Logic Programming - Dynamics of Proof Search

Linear Logic How to check that only the
set N is empty?

I'v,I'2, A1, Ay

are multisets.

Not so easy!

We are able to check if the
whole linear context is empty:

A representation of a graph:

N ={nodez |z € N} |_7?F"A 1]
A={adjz y| (z,y) € A} - lA

- N, A
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Logic Programming - Dynamics of Proof Search

Linear Logic

['1,T'2, A1, A
are multisets.

A representation of a graph:

N ={nodez |z € N}
A={adjz y | (z,y) € A}

- N, A

How to check that only the
set N is empty?

Not so easy!

We are able to check if the
whole linear context is empty:

- A
A

We need local contexts.
We need subexponentials.
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ob b ol
. 9 o o g <
not provable

Pp T bp_orp
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po e

b T

7r'r‘
o

not provable

?bF =7

Subexp Signature (I, <, W, C)

W and C are up. closed under <
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Subexponentials

r W r
?b,!b 701 Subexp Signature (I, <, W, C)

not provable

br_rp obp_orp VW and C are up. closed under <

yeCandze )V

-C, A 5 -0, Y0, A . - A
- 2%C, A -2YC, A - ?4C, A
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Subexponentials

r W r
?b,!b 701 Subexp Signature (I, <, W, C)

not provable

br_rp obp_orp VW and C are up. closed under <

yeCandze )V

-C, A 5 -0, Y0, A . - A
- 2%C, A -2YC, A - ?4C, A

W

GEY O N S O §;
1, 4 v 12 we can now check if a subset is empty

- ?xlCl, .. .,?xnCn, 1“C -

a=x;forallez=1,...,n
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Final Proof

N
N

<

75



Defense

Focused proof search yields algorithmic specification

Final Proof
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Final Proof
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Focused proof search yields algorithmic specification

Final Proof
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N
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Focused proof search yields algorithmic specification

Logic Interpreter / Final Proof

Backtracking /
External Control \ /

<1<

g\/

79



Defense

Focused proof search yields algorithmic specification

Logic Interpreter /
Backtracking /
External Control

—/

Final Proof

N
__/

Focused proof search yields
algorithmic specification

- (partial) computation runs are
in 1-1 correspondence to (open)
focused derivations: non-
determinism in both can be
made to match exactly.

- No external interpreter
required: The proof theory of
focused proof search is
sophisticated enough to provide
what is needed.

Controlling the size of focusing
phases seems to be the key
observation: global choice and
local choice operators
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Focused proof search yields algorithmic specification

Logic Interpreter /
Backtracking /
External Control

—/

Final Proof

N
__/

More detalls
Chapters 5-7 of my
thesis

Focused proof search yields
algorithmic specification

- (partial) computation runs are
in 1-1 correspondence to (open)
focused derivations: non-
determinism in both can be
made to match exactly.

- No external interpreter
required: The proof theory of
focused proof search is
sophisticated enough to provide
what is needed.

Controlling the size of focusing
phases seems to be the key
observation: global choice and
local choice operators
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s

\

One specification z

Some logical
equivalences

F=F'

\

%

Defense
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Overview

Several
Systems

-

\_

One specification z

Some logical F — F/

equivalences

~

/

\/ \
Sequent Natural
Calculus Deduction

v
Tableaux
Systems

Defense
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Encoding Logics

We consider only (first-order) minimal, intuitionistic and
classical object logics.
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Encoding Logics

We consider only (first-order) minimal, intuitionistic and
classical object logics.

Encoding Formulas

« Sequent Calculus — Left / Right
« Natural Deduction — Hyp / Con
e Tableaux — Neg / Pos
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Encoding Logics

Defense

We consider only (first-order) minimal, intuitionistic and
classical object logics.

Encoding Formulas Encoding Sequents

« Sequent Calculus — Left / Right
« Natural Deduction — Hyp / Con
e Tableaux — Neg / Pos

= | Bi],---y [Bnl, [C1],-- ., [Cn]
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Theory £ with the meaning of connectives —
Existential Closure of

(1) [A=B|*®([Al®|B]) (=r) [A= B|-&(lAl®[B])
(AL) [AAB]=® (Al @ [B]) (Ag) _AABP®(MW&[BD
(Vz) |VB|* ® |Bz] (Vr) [VB]t ® Va[Bz]

)

(Lz) [L]*F (tr) [t]*®T
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Theory £ with the meaning of connectives —
Existential Closure of

(1) A= B|*®([Al®|B]) (=r) [A= B| & (lAl®[B])
(AL) [AAB]F®(lAl@[B]) (Ar) [AAB]*®([A] &[B])
V) |VB|* ® |Bz| (Vr) [VB]* ® Va[Bz]
(Lz) [L]*F (tr) [t]tT®T
and the structural and identity rules
(Idy) [B]-®[B]+ (Id2) [B]® |B]
(Strz,) |B] L ®7? | B| (Strg) | B]| L7 | B
(Wgr) |[C] L1

89




Defense

Theory £ with the meaning of connectives —
Existential Closure of

(1) A= B|*®([Al®|B]) (=r) [A= B| & (lAl®[B])
(AL) [AAB]F®(lAl@[B]) (Ar) [AAB]*®([A] &[B])
V) |VB|* ® |Bz| (Vr) [VB]* ® Va[Bz]

(Lz) [L]*F (tr) [t]-®T

and the structural and identity rules

(Id;) [B]*-®[B]+ (Id2) |B|®|[B]
(Stry,) |B|*+ ®7?|B] (Strg) [B]* ®?[B]
(Wgr) [Clt® L

(=1) A=B|"a([Al®|B]) (Hd;) [B]®![B]
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Duality of the |-| and [-| atoms
-VB([B] = |B|*") & VB(|B| = [B]*), I, Id,

with Strz, and Strg we prove the equivalences:

|B|=7|B| and |[B| =7|B]
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Levels of Adequacy

We identify three levels of adequacy:

e Relative completeness: comparisons deal only with
provability: the two systems have the same theorems.

* Full completeness of proofs: comparisons deal with proof
objects: the proofs of a given formula are in one-to-one
correspondence with proofs in another system.

e Full completeness of derivations: comparisons deal with
derivations (i.e., open proofs, such as inference rules
themselves): the derivations in one system are in one-to-one
correspondence with those in another system.
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Levels of Adequacy

We identify three levels of adequacy:

e Relative completeness: comparisons deal only with
provability: the two systems have the same theorems.

* Full completeness of proofs: comparisons deal with proof
objects: the proofs of a given formula are in one-to-one
correspondence with proofs in another system.

e Full completeness of derivations: comparisons deal with
derivations (i.e., open proofs, such as inference rules
themselves): the derivations in one system are in one-to-one
correspondence with those in another system.

We always obtain adequacy on the level of derivations.
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Sequent Calculus
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Sequent Calculus

if all |-| and [-| (meta-level) atoms are

Defense

1) T
2) T
3) T

S C M E Ly, [T [C] )
1y C ift + ﬁlj, I_FJ . |_C_| ’ﬂ

e A F Ly, [T TA] )
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Sequent Calculus

if all |-| and [-| (meta-level) atoms are

2) I 15 C iff »Clja LFJ . [C—| 'ﬂ
3)T ki Aff F Ly, |T], [A]

»Clk = LU {Idl, Idg, StrL, StrR},
»Clm :‘CU{Idla /275trL7:>/L}\{J—L7:>L}7
»Clj = LU {Id17 Id/27 StrIn i/La WR} \ {:>L}7
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Sequent Calculus

if all |-| and [-| (meta-level) atoms are

2) I 15 C iff »Clja LFJ . [C—| 'ﬂ
3)T ki Aff F Ly, |T], [A]

»Clk = LU {Idl, Idg, StrL, StrR},
Lim :£U{Id1, ’Q,StrL,:>’L}\{J_L,:>L},
[flj :LU{Idla ,275trL7:>/LaWR}\{:>L}7

We can also obtain a adequacy up to the level of derivations. For
Intuitionistic and minimal logics the ! is important.
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The encoding of an inference rule (remember all meta-level
atoms are negative):

I''A=BFA I''A= B,BFC
I'A=B+FC
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The encoding of an inference rule (remember all meta-level
atoms are negative):

I''A=BFA I'A= B,B-C

I'A=B+FC
=K Al =K |B|,[C]®
L) =K IA] R FK:[C] | |B] [[(S]U’Rm
K |A= B|*- U7 FK:[CTUTAI®[B]
K- [C| J F 2% 3@

K [C] 1 D2
Fis JAGB|A = B|*t ® ([A] ® | B])
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The encoding of an inference rule (remember all meta-level
atoms are negative):

I''A=BFA I'A= B,B-C

F,AA:>BI—C
| A= B| K
is enforced
=K Al =K |B|,[C]®
L) =K IA] 5 B FK:[C] | |B] [[(S]U’Rm
- K |A= B|t SK:[CIUAT®(B]
K- [C| J F 2> 3,¢)

K [C] 1 D2
Fis JAGB|A = B|*t ® ([A] ® | B])
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The encoding of an inference rule (remember all meta-level
atoms are negative):

I''A=BFA I''A= B,BFC

|C'| must go
F’AA = BrC to the right branch
A= B| ek H
is enforced
=K Al =K |B|,[C]®
) PRI LR oy B [[g]“’Rm
K |A= B|E P SR [CTV MA@ (B |, -
K- [C| J F 2> 3,¢)

FKjﬂﬂ-Wﬂ
Fis JAGB|A = B|*t ® ([A] ® | B])
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Cut free proofs — remove the clause (ID ) from the theory:
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Cut free proofs — remove the clause (ID ) from the theory:

if all |-| and [-]| (meta-level) atoms are

)T - Ciff FLloLIT]: [C] 1
)T+ ¢ iff - L1, 0] [C] 1
3) T fyAlff - L1, [T, [A]

It is possible to obtain an adequacy on the level of derivations.
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Natural Deduction [Sieg, Byrnes, 1998]

', FAG?T

I'Fpa FAG]
FFndFi

I [AT] IAE]

T AF Al .
T Ab., Bt FH,A=B| Th A%
TF A= B1 TF.,Bl

['Fnqg A{c/x} 1 o I'pa Ve A
I',qg VT AT [ ] FFndA{t/aj}i,

= I

= E]

I'pat T [tI]

VE]

S]
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Natural Deduction [Sieg, Byrnes, 1998]

. T,y FAG ]|
T AF,4 Al TF,FEAGT

FFndFi

A NE]

I'At,qg BT | ' A=B] T’ AT
I'-,gd A= B I't,q Bl
['Fnqg A{c/x} 1 o I',aVe Al
I',qg VT AT [ ] I't,,4 A{t/a:} 4

= = E] t1]

VE] S]

I'Fra OF Useful to identify normal =3, 0] : [C] 1

proofs, where the S rules is
not allowed.
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Natural Deduction - including normal forms

if all |-| (meta-level) atoms are

Defense

if all |-] (meta-level) atoms are positive

1) T b,y C1
2) T+, C1

3) T+, C.

/

it = L5, |

iff L7

iff I—Ef] |

[97 L

- [C
- [C
: | C

i
i
1

i

An adequacy on the level of derivations can also be obtained.
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Natural Deduction - including normal forms

if all |-| (meta-level) atoms are

if all |-] (meta-level) atoms are positive

1) I' l_nj C1 it + Elja _F : [C ’ﬂ
2)T ke, C1iff - L], (T : [C] 1
3) Ty, CLiff =L, |T]: [C]F 14

An adequacy on the level of derivations can also be obtained.

Since the polarity assignment a focused system does not affect

provability, we obtain the following relative completeness result for
free:

['hy CiffThy; C and TH. CifT Y, C.
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Cut now becomes Switch Rule:
I' I_nd C T

=3, [T [C]
I
S e vie] Y FS e S
AN HERE I

=3, (T (O]
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Other proof systems

In Chapter 4, we also deal with:

e Systems with generalized elimination and introduction rules
 the KE tableaux of D'Agostino and Mondadori, and
 a proof system of Smullyan with many axioms and with cut

as the only inference rule.
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My Thesis

Exploiting non-canonicity in the Sequent Calculus

|

« Polarity assignment of e Tabled deduction
literals In focused
systems » Logical frameworks
e Linear logic's « Algorithmic

exponentials specifications

110



