
Bounded Memory Protocols

Max Kanovich1, Tajana Ban Kirigin2, Vivek Nigam3, Andre Scedrov4

Abstract

It is well-known that the Dolev-Yao adversary is a powerful adversary. Besides acting
as the network, intercepting, decomposing, composing and sending messages, he can
remember as much information as he needs. That is, his memory is unbounded. We
recently proposed a weaker Dolev-Yao like adversary, which also acts as the network,
but whose memory is bounded. We showed that this Bounded Memory Dolev-Yao
adversary, when given enough memory, can carry out many existing protocol anoma-
lies. In particular, the known anomalies arise for bounded memory protocols, where
although the total number of sessions is unbounded, there is only a bounded number of
concurrent sessions and the honest participants of the protocol cannot remember an un-
bounded number of facts nor an unbounded number of nonces at a time. This led us to
the question of whether it is possible to infer an upper-bound on the memory required
by the Dolev-Yao adversary to carry out an anomaly from the memory restrictions of
the bounded protocol. This paper answers this question negatively (Theorem 8).

1. Introduction

In the symbolic verification of protocol security, one considers a powerful adver-
sary model now usually referred to as the Dolev-Yao adversary, which arose from po-
sitions taken by Needham and Schroeder [NS78] and a model presented by Dolev and
Yao [DY83]. Not only can the Dolev-Yao adversary act as the network, intercepting,
decomposing, composing and sending messages, but he can also remember as much
information as he needs. The goal in protocol verification is to demonstrate that such a
powerful adversary cannot discover some secret information, when using some proto-
col(s). Clearly, if it is shown that such a powerful adversary cannot discover the secret
symbolically, then weaker adversaries will also not be able to discover the secret.

In [KKNS], we proposed a Bounded Memory Dolev-Yao adversary, which is simi-
lar to the Dolev-Yao adversary. He also acts as the network, intercepting, sending and
composing messages, but differently from the Dolev-Yao adversary, he can remember

Email addresses: mik@dcs.qmul.ac.uk (Max Kanovich), bank@math.uniri.hr (Tajana Ban
Kirigin), vivek@ci.ufpb.br (Vivek Nigam), scedrov@math.upenn.edu (Andre Scedrov)

1Queen Mary, University of London, UK
2University of Rijeka, HR
3Federal University of Paraı́ba, João Pessoa, Brazil
4University of Pennsylvania, Philadelphia, USA

Preprint submitted to Elsevier June 16, 2014

only a bounded number of facts at a given time. So, in order for him to learn some new
information, such as a nonce, he might have to forget some information he previously
learned, such as an old nonce. Clearly, our Bounded Memory Dolev-Yao adversary is
weaker than the Dolev-Yao adversary, as the former’s memory is bounded, while the
latter’s is not.

However, despite being weaker, we demonstrated in our previous work [KKNS]
that many known anomalies can also be carried out by our Bounded Memory Dolev-
Yao adversary. We also noticed that the protocols for which we could replay the
anomaly with our bounded memory adversary were all bounded memory protocols,
where one considers that the memory of the system is bounded. That is, in concurrent
runs the honest participants of the protocol also cannot remember an unbounded num-
ber of facts nor an unbounded number of nonces at a time. This led us to the question
of whether it is possible to infer an upper bound on the memory of the Dolev-Yao ad-
versary with respect to the memory restrictions of bounded memory protocols, that is,
with respect to the memory used by the participants. Such an upper bound would mean
that an attack using the Standard Dolev-Yao adversary exists if and only if an attack
using the Bounded Memory adversary exists.

This paper answers this question negatively. That is, it is not possible to determine
an upper bound on the memory of the Dolev-Yao adversary even if the memory of the
protocol is bounded. From our main result (Theorem 8), we can infer that the Standard
Dolev-Yao adversary cannot be constructively approximated by an infinite sequence
of increasing memory Bounded Memory adversaries. We show this negative result
by proposing a novel undecidability proof for the secrecy problem with the Dolev-Yao
adversary. Our undecidability result strengthens the one given in [CDL+99, DLMS04],
confirming the hardness of protocol verification. In particular, we show that the secrecy
problem is “very undecidable:” the secrecy problem is undecidable even for bounded
memory protocols and thus a bound on the memory of the Dolev-Yao adversary is not
computable from a bound on the memory used by a protocol. This is accomplished by
a novel encoding of Turing machines by means of memory bounded protocols.

After Section 2 where we introduce the preliminary concepts used in this paper,
including Balanced Actions, we proceed as follows:

• Section 3 reviews the specification of bounded memory protocols, the Dolev-
Yao Adversary, and of Bounded Memory Adversaries. It also reviews some of
the complexity results for the secrecy problem;

• Section 4 contains the secrecy undecidability proof with memory bounded proto-
cols. This is a novel, stronger undecidability proof, which allows us to infer that
it is not possible to determine an upper bound on the memory of the Dolev-Yao
adversary from the memory bound of the protocol;

• Section 5 revisits the undecidability proof given in [CDL+99, DLMS04] and
shows that a similar proof can be obtained by using Bounded Memory Protocols;

• Finally in Sections 6 and 7 we comment on related work and conclude by point-
ing out to future work.

2

This is an extended and improved material on bounded memory protocols from the
conference paper [KKNS13]. Besides containing most of the proofs and more detailed
explanation, the material in Section 5 is novel.

2. Preliminary: Configurations, Actions and Balanced Actions

We formalize bounded memory protocol theories and adversary theories by means
of multiset rewrite rules, similarly as in [CDL+99, DLMS04]. A set of rewrite rules,
or a theory, was proposed in [CDL+99, DLMS04] for modeling protocols and the
standard Dolev-Yao adversary with unbounded memory. In order to carefully compare
our complexity results, we closely follow this approach and adapt the theories from
[CDL+99, DLMS04] to formalize bounded memory protocols and Bounded Memory
Adversaries.

Assume fixed a sorted first-order alphabet consisting of constant symbols, c1, c2, . . .,
function symbols, f1, f2, . . ., and predicate symbols, P1, P2, . . . all with specific sorts
(or types). The multi-sorted terms over the signature are expressions formed by apply-
ing functions to arguments of the correct sort. A fact is a ground, atomic formula over
multi-sorted terms. Facts have the form P (t1, . . . , tn) where P is an n-ary predicate
symbol, where t1, . . . , tn are terms, each with its own sort.

The size of a fact is the total number of term and predicate symbols it contains. We
count one for each predicate, function, constant, and variable symbols. We use |F | to
denote the size of a fact F . For example, |P (x, c)| = 3, and |P (f(z, x, n), z)| = 6.
We will assume in the remainder of this paper an upper bound on the size of facts, as
in [CDL+99, DLMS04, KRS11]. As we argue later in this section, the combination of
a bound on the size of facts and the use of balanced actions imposes a bound on the
memory of the system. This will be key for the decidability of the problems that we
deal with in this paper.

A state or configuration of the system is a finite multiset of grounded facts, i.e.,
facts that do not contain variables. Intuitively configurations specify the state of the
world. They are modified by actions, which are in general multiset rewrite rules of the
following form:

X1, . . . , Xn −→ ∃~x.Y1, . . . , Ym (1)

where the Xis and Yjs are facts. The collection X1, . . . , Xn is called the pre-condition
of the rule, while Y1, . . . , Ym is called its post-condition. We assume that all free
variables are universally quantified at the head of the rule. By applying the rule for a
ground substitution (σ), the pre-condition (X1σ, . . . ,Xnσ) to which this substitution
has been applied is replaced with the post-condition (Y1σ, . . . , Ymσ) to which the same
substitution has been applied. In this process, the existentially quantified variables (~x)
appearing in the post-condition are replaced by fresh constants, also called nonces in
protocol security literature. The rest of the configuration remains untouched. Thus,
we can apply the rule P (x), Q(y) → ∃z.R(x, z), Q(y) to the global configuration
V, P (t), Q(s) to get the global configuration V,R(t, c), Q(s), where the constant c is
new.

Given a multiset rewrite system R, one is often interested in the reachability prob-
lem: Is there a sequence of (0 or more) rules from R which transforms configuration

3

W into Z? If this is the case then we say that Z is reachable from W using R, and we
call any such sequence of actions a plan.

2.1. Balanced Actions, Empty Facts and Nonce Updates
An important condition for formalizing bounded protocols is that of balanced ac-

tions, introduced in the context of collaborative systems [KRS11]. We classify an
action as balanced if the number of facts in its pre-condition is the same as the number
of facts in its post-condition. That is, n = m in Equation 1. If we restrict all actions in
a system to be balanced, then the number of facts in each configuration in a run is the
same as in the initial configuration. This is because when a balanced action is applied
to a configuration, the same number of facts that are removed from the configuration
are also inserted into it.

The main motivation of using balanced actions is to bound the storage capacity of
agents. Since the number of facts of all configurations in a plan is the same as the
number of facts in the initial configuration, denoted by the symbol m, the number of
facts that are known to agents at any time is bounded. However, even with the use of
balanced actions, it does not mean that there is a bound on the number of symbols (or
terms) present in any configuration. One also needs a bound on the size of facts denoted
by the symbol k. Otherwise, an agent would be able to store as many symbols as he
wants by using for instance a pairing rule:

M(t1),M(t2)→M(〈t1, t2〉),M(t2)

Notice that this action is balanced, but the number of symbols that appear in the post-
condition is greater than the number of symbols that appear in the pre-condition. With-
out bounding the size of facts, one would be able to store an unbounded number of
symbols in the term level. In this way it would be possible for the system, represented
by a configuration, to contain as much information as needed. On the other hand,
bounding the size of facts implies that the pairing rule would not be allowed if the size
of the fact M(〈t1, t2〉) is greater than the upper-bound. Thus, the number of symbols
in a configuration is always bounded by the value mk, where m is the number of facts
in the initial configuration and k the upper-bound on the size of facts.

These two conditions, namely the use of balanced actions and of an upper-bound
on the size of facts, are crucial for our decidability results:

• Kanovich, Rowe and Scedrov showed [KRS09] that for unbalanced systems the
reachability problem is undecidable even if we bound the size of facts;

• It was also shown [DLMS04] by encoding the Post correspondence problem
that if one does not bound the size of facts, then the reachability problem is
undecidable even if the system is balanced.

In contrast, our previous work [KKNS] showed that the reachability problem is PSPACE-
complete for balanced system if we assume both a balanced system and an upper-bound
on the size of facts.

As an illustration, consider the following unbalanced rule:

→ ∃n.M(n)

4

This rule specifies that the system may create a fact with a fresh nonce increasing the
number of facts in a configuration. Such a rule is not balanced. To support the creation
of new facts in balanced systems, we use empty facts, written P (∗). Intuitively, empty
facts denote available memory slots that could be filled with some new information.
Here ∗ is not a constant, but just used for illustrative purposes. By using empty facts,
one can transform unbalanced systems into balanced systems simply by adding enough
empty facts to the pre-condition or the post-condition of each rule with so that it be-
comes balanced. For instance, a balanced version of the above rule, called GEN, is
shown below:

GEN: P (∗)→ ∃n.M(n)

The system can then create a new nonce provided the given configuration has at least
one empty fact. It is also assumed that the system may forget some information, by
replacing a fact by an empty fact, as illustrated by the following rule, called DELM:

DELM: M(x)→ P (∗)

This is a simple solution for bounding the storage capacity of agents. The agents in the
system may need to be careful on how they use the system’s memory limitation.

Finally, the above rules also illustrate two important aspects of using nonces. The
first unbalanced rule specifies that one can create a nonce, while the two balanced rules,
GEN and DELM, specify that agents in a balanced system do not create nonces, but
rather update an existing symbol with a fresh nonce. That is, they replace an exist-
ing symbol, possibly an existing nonce, with a fresh one. Hence, differently from the
unbalanced systems, agents do not remember all the nonces created. This distinction
between nonce creation and nonce update will play an important role in our unde-
cidability proof for the secrecy problem (defined formally in the next section), when
compared with the proof given by Durgin et al. [DLMS04]. The honest participants in
our Turing machine encoding (Section 4) will rely only on nonce updates, while the
honest participants in the proof given by Durgin et al. [DLMS04] use nonce creation.

3. Bounded Memory Protocols and Adversaries

This section reviews the definition of Bounded Memory Protocols introduced in
our previous work [KKNS] illustrating the difference to well-founded protocols used
in [DLMS04]. We also discuss the differences between the Standard Dolev-Yao adver-
sary and the Bounded Memory adversary in Section 3.2 and finally we review the com-
plexity results for the secrecy problem in Section 3.3, namely the undecidability result
given by Durgin et al. [DLMS04] in the presence of the Standard Dolev-Yao adver-
sary and our PSPACE-completeness [KKNS] in the presence of the Bounded Memory
adversary.

3.1. Bounded Memory Protocols

A bounded memory protocol, formally defined below, only contains balanced ac-
tions [KKNS]. This means that the number of facts known by the participants at a given
time is bounded. Bounding the memory available for protocol sessions also intuitively

5

bounds the number of concurrent protocol sessions. This is because for each proto-
col session, one needs some free memory slots to remember, for instance, the internal
states of the agents involved in the session. However, this does not mean that there may
not be an unbounded number of protocol sessions in a trace. Once a protocol session
is completed, the memory slots it required can be re-used to initiate a new protocol
session.

This is different from the well-founded protocol theories [CDL+99, DLMS04] pro-
posed in the literature. The rules in well-founded protocol theories are not necessarily
balanced. All protocol sessions are created at the beginning of the trace before any
protocol session starts executing. Therefore, in well-founded protocol theories, an un-
bounded number of protocol sessions can run concurrently and therefore participants
are allowed to remember an unbounded number of facts.

Definition 1 (Balanced Role Theory). A theoryA is a balanced role theory if there is
a finite list of predicate names called the role states S0, S1, . . . , Sm for some m, such
that every rule L → ∃~t.R in A is balanced and there is exactly one occurrence of a
state predicate in L, say Si, and exactly one occurrence of a state predicate in R, say
Sj , such that i < j. We call the first role state, S0, initial role state, and the last role
state Sm final role state. Only rules with final role states can have an empty fact in the
post-condition.

Defining roles in this way ensures that each application of a rule in A advances the
state forward. Each instance of a role can only result in a finite number of steps in a
trace. The request on empty facts formalizes the fact that one of the participants, either
the initiator or the responder, sends the “last” protocol message. In [KKNS], one can
find several examples of protocols specified as balanced role theories.

In order to allow for an unbounded number of protocol sessions in a trace, we
allow protocol roles to be created at any time with the cost of consuming empty facts
P (∗). At the same time, we allow protocol sessions that have been completed to be
forgotten. Once a final role state has been reached, it can be deleted, creating new
empty facts P (∗) in the process. These empty facts can then be used to create new
protocol roles starting hence a new protocol session. Such theories are called role
regeneration theories.

Definition 2 (Role Regeneration Theory). If A1, . . . ,Ak are balanced role theories,
a role regeneration theory is a set of rules that either have the form

Q1(~x1) · · ·Qn(~xn)P (∗)→ Q1(~x1) · · ·Qn(~xn)S0(~x) ,

where Q1(~x1) . . . Qn(~xn) is a finite list of facts not involving any role states, and S0 is
the initial role state for one of theories A1, . . . ,Ak, or have the form

Sm → P (∗),

where Sm is the final state for one of theories A1, . . . ,Ak.

This definition is a central difference to well-founded protocol theories [CDL+99,
DLMS04]: In well-founded protocol theories [CDL+99, DLMS04] one assumes that

6

all protocol sessions are initialized at the beginning of the trace, that is, all protocol
sessions run concurrently. This means that there is no bound on the memory of the
(honest) participants since they need to remember that they participate in a possibly
unbounded number of protocol sessions. Under the definition above, on the other hand,
this is no longer the case as the explicit use of balanced actions in role theories and role
regeneration theories allows us to bound the memory of the participants, including the
number of concurrent protocols in the system, without bounding the total number of
sessions in a trace.

Definition 3 (Bounded Memory Protocol Theory). A pair (P, H) is a bounded mem-
ory protocol theory if H is a finite set of facts (called initial set), and P = R] A1]
· · ·] An is a protocol theory where R is a role regeneration theory involving only
facts from H and the initial and final roles states of A1, . . . ,An, and A1, . . . ,An are
balanced role theories. For role theoriesAi andAj , with i 6= j, no role state predicate
that occurs in Ai can occur in Aj .

Intuitively, a bounded memory protocol theory specifies a particular scenario to be
model-checked involving some given protocol(s). Besides empty facts, P (∗), the finite
initial set of facts (H) contains all the facts with the information necessary to start
protocol sessions, for instance, shared and private keys, the names of the participants,
as well as any compromised keys. Here, for simplicity, we assume only symmetric
keys, although other types of keys can be also formalized following the lines described
in [CDL+99, DLMS04].

3.2. Standard Dolev-Yao and Bounded Memory Dolev-Yao Adversaries

The powerful adversary proposed by Dolev and Yao [DY83] acts as the network,
where all messages communicated are sent through the adversary. He hears everything
and learns messages modulo encryption. More precisely, he is capable of intercepting
any message sent by a protocol participant and can then store the received information,
decompose it and decrypt with the keys he possesses. He cannot, however, decrypt
messages for which he does not have the correct key. Moreover, he can also create
fresh values, encrypt, compose messages from the information he has learned and send
messages. One of his major strengths is that he can remember as much information as
he wants, i.e., his memory is unbounded.

Figure 1a. depicts the rules of such an adversary. The I/O rules specify the fact
that the adversary acts as the network receiving all messages sent (NS) and sending
all messages that are to be received (NR). The remaining rules are straightforward,
specifying when the adversary may decompose and compose messages. The term

EK(t)

denotes the message obtained by encrypting the term t with the key K. Notice that
contrary to the formalization of the bounded memory protocols, the actions specifying
the Dolev-Yao adversary are not all balanced. In particular, the adversary may always
learn new facts, such as in the actions DECS and GEN, where the adversary learns the
contents of an encrypted message and creates a nonce respectively.

7

I/O Rules:
REC : NS(x)→M(x)
SND : M(x)→ NR(x)

Decomposition Rules:
DCMP :M(〈x, y〉) →M(x)M(y)
DECS : M(k)M(Ek(x))→

M(k)M(Ek(x))M(x)

Composition Rules:
COMP :M(x)M(y)→M(〈x, y〉)
USE : M(x)→M(x)M(x)
ENCS : M(k)M(x)→

M(k)M(Ek(x))
GEN : → ∃n.M(n)

(a) Theory for the Standard Dolev-Yao Adversary

I/O Rules:
REC: NS(x)→M(x)
SND: M(x)→ NR(x)

Decomposition Rules:
DCMP: M(〈x, y〉) P (∗)→M(x)M(y)
DEC: M(k)M(Ek(x)) P (∗)

→M(k)M(x)M(Ek(x))

Composition Rules:
COMP: M(x)M(y)→M(〈x, y〉) P (∗)
USE: M(x)P (∗)→M(x)M(x)
ENC: M(k)M(x)→M(k)M(Ek(x))
GEN: P (∗)→ ∃n.M(n)

Memory maintenance rule:
DELM: M(x)→ P (∗)

(b) Bounded Memory Dolev-Yao Adversary Theory

Figure 1: Theories for the Standard and the Bounded Memory Adversaries

In [KKNS], we proposed a Bounded Memory Dolev-Yao adversary, which has
many capabilities of the Dolev-Yao adversary. He can intercept, send and compose
messages, create nonces, etc. But differently from the Dolev-Yao adversary, he can
remember only a bounded number of facts of a bounded size, at any given time. This
is formally imposed by the balanced adversary theory presented in Figure 1b and by
assuming a bound on the size of all facts. Such a bound disables the intruder to form
terms of unbounded size and use them for storing unbounded amount of data inside
facts.

In order for intruder to store some new information, such as a nonce, he might have
to forget some information he previously learned. This is technically accomplished
by using empty facts P (∗). For instance, the DCMP rule specifies that the bounded
memory adversary can decompose a pair he learned (M(〈t1, t2〉)) only if he has an
empty fact left. So in order to carry out an anomaly, the adversary may need to man-
age his memory, by forgetting some data he previously learned. This is specified by
the additional memory maintenance rule (DELM). Notice that by using the memory
maintenance rule adversary is able to replace any M -fact, i.e. he may choose to forget
any data from his memory. For example he can forget some message from an earlier
session, parts of messages, nonces etc. On the other hand, if in some interaction with a
protocol, adversary has enough free memory to perform his actions, it’s not necessary
for him to use these rules, i.e. he’s not forced to forget any data.

3.3. Complexity Results for the Secrecy Problem

In an interaction of malicious adversaries with honest participants, one is interested
in the secrecy problem, namely, in determining whether the adversary can discover a
secret s. Formally it is an instance of the reachability problem: Is it the case that a

8

configuration containing M(s) can be reached from an initial configuration, where s is
a secret originally owned by an honest participant?

Undecidability of the Secrecy Problem. It has been known for some time that the se-
crecy problem is undecidable in general [CDL+99, DLMS04]. The undecidability
proof in [CDL+99, DLMS04] proceeds by encoding the existential Horn problem,
which is also proved to be undecidable. However, that encoding used well-founded
protocol theories, where the memory of the protocol was unbounded. For instance, in
well-founded protocol theories, it is allowed for an unbounded number of concurrent
protocol sessions to run at the same time. In fact, all the protocol sessions in a trace
are initialized at the beginning before any session starts. This implies that the partic-
ipants of the system may remember an unbounded number of facts, namely, the facts
containing the information of the protocol sessions in which they are participating.

In Section 4, we strengthen the result in [CDL+99, DLMS04], by showing that the
secrecy problem is undecidable even if the memory of the protocol is bounded. This is
accomplished by a novel encoding of Turing machines by means of memory bounded
protocols. In Section 5, we revisit the undecidability proof given in [DLMS04] and
show that it is also possible to encode the existential Horn problem by using bounded
protocol theories.

4. Protocol security is very undecidable: A bound on the adversary cannot be
inferred from a bound on a protocol

We now detail the sound and faithful encoding of Turing machines using bounded
memory protocols. We show that an attack on the given protocol by an unbounded,
standard Dolev-Yao adversary is possible if and only if the encoded Turing machine
terminates. From that we infer the undecidability of a Dolev-Yao attack even for
bounded memory protocols. Notice that our result works even if we assume a (large
enough) bound on the size of facts, e.g., a bound around 30.

4.1. Encoding of Turing Machine Tapes

Without loss of generality, letM be a Turing machine such that

(i) M has only one tape, which is one-way unbounded to the right. The leftmost cell
(numbered by 0) contains the marker $ unerased;

(ii) The initial 3-cell configuration is of the following form, where B stands for the
blank symbol:

$ 〈q1, B〉 B (2)

We write 〈q, ξ〉 to denote that the corresponding cell contains the symbol ξ
and is scanned byM in its state q.

(iii) We assume that all instructions of M are “move” instructions, i.e. of the form
qξ→ q′ηR or qξ→ q′ηL, denoting: “if in state q looking at symbol ξ, replace it
by η, move the tape head one cell to the right, respectively to the left, and go into
state q′”.

9

(iv) The head ofM cannot move to the leftmost cell marked with $.

(v) Finally,M has only one accepting state, q0.

Encoding of the Tape. In our encoding, we need two honest participants only, Alice
and Bob. Assume they share a symmetric key K, not known to any other participant
and that only Alice knows a secret s. We will encode the tape cells separately as
follows:

(a) An unscanned cell that contains symbol ξ0 is encoded by a term encrypted with the
key K

EK(〈t0, ξ0, e0, t1〉),

where t0 and t1 are nonces, and e0 = 1 if the cell is the last cell in a configuration
and e0 = 0 otherwise.

(b) The cell that contains symbol ξ and is scanned byM in state q is also encoded by
a term encrypted with the key K

EK(〈t1, 〈q, ξ〉, 0, t2〉)

where t1 and t2 are nonces. In the above encoding of the scanned cell, the symbol
1 is never used in the place of symbol 0, since the head never visits the last cell of
the tape. As will be shown below, as soon as the head visits the penultimate cell
the tape is extended.

(c) Adjacent cells share nonces as follows. The encoding of the cell immediately to
the right of the cell encoded by EK(〈t, α, 0, t′〉) is EK(〈t′, β, e0, t′′〉).

Motivation: The nonces t0 and t1 in the terms EK(〈t0, α, e0, t1〉) encoding the
tape cells are used for two purposes:

(i) Firstly, t0 and t1 serve as “timestamps” of a visit made byM in the cell. Whenever
M re-visits this cell, the previous term is updated with fresh nonces indicating a
new visit;

(ii) Secondly, as t0 and t1 are unique, they are used to uniquely link cells that are
adjacent to each other.

For example, the initial configuration, Equation (2), with three cells is encoded by
using the sequence of nonces t0, t1, t2, t3 as shown below:

〈EK(〈t0, $, 0, t1〉), EK(〈t1, 〈q1, B〉, 0, t2〉), EK(〈t2, B, 1, t3〉)〉

Notice the role of the nonces t0, t1, t2, t3. In particular, the nonces t1 and t2 are used
to correctly encode the fact that the cell 〈q1, B〉 is to the right of the cell with the mark
$ and to the left of the cell with the blank symbol.

10

Initial set of facts:

P (∗), P (∗), P (∗), Guy(A,K), Guy(B,K), Secret(s), Failure(f),
Init(〈EK(〈t0, $, 0, t1〉), EK(〈t1, 〈q,B〉, 0, t2〉), EK(〈t2, B, 1, t3〉), EK(〈t4, B, 1, t5〉)〉)

Role Theory for Alice:

UPDA: A0(X, k, s, f)P (∗)→ ∃~t′i.A1(k, s, f)NS(X
′)

RESA0: A1(k, s, f)NR(Y0)→ A2(Y0, k, s, f)NS(s)
RESA1: A1(k, s, f)NR(Y1)→ A2(Y1, k, s, f)NS(s)
RESA2: A1(k, s, f)NR(Y2)→ A2(Y2k, s, f)NS(s)
RESA3: A1(k, s, f)NR(Y3)→ A2(Y3, k, s, f)NS(f)

where

X = 〈EK(〈t0, $, 0, t1〉), EK(〈t1, 〈q,B〉, 0, t2〉), EK(〈t2, B, 1, t3〉), EK(〈t4, B, 1, t5〉)〉
X ′ = 〈EK(〈t′0, $, 0, t′1〉), EK(〈t′1, 〈q,B〉, 0, t′2〉), EK(〈t′2, B, 1, t′3〉), EK(〈t′4, B, 1, t′5〉)〉
Y0 = 〈EK(〈t00, 〈q0, ξ〉, 0, t01〉), EK(〈t01, α1, 0, t20〉), EK(〈t20, α2, e2, t21〉), EK(〈t4, B, 1, t5〉)〉
Y1 = 〈EK(〈t00, α0, 0, t01〉), EK(〈t01, 〈q0, ξ〉, 0, t20〉), EK(〈t20, α2, e2, t21〉), EK(〈t4, B, 1, t5〉)〉
Y2 = 〈EK(〈t00, α0, 0, t01〉), EK(〈t01, α1, 0, t20〉), EK(〈t20, 〈q0, ξ〉, e2, t21〉), EK(〈t4, B, 1, t5〉)〉
Y3 = 〈EK(〈t00, α0, 0, t01〉), EK(〈t10, α1, 0, t12〉), EK(〈t20, α2, e2, t21〉), EK(〈t4, B, 1, t5〉)〉

where αi 6= 〈q0, ξ〉, i = 0, 1, 2

Role Theory for Bob:

ROLB: Guy(G, k)P (∗)→ Guy(G, k)B0(k)

UPDB: B0(k)NR(X)→ ∃~t′i.B1(k)NS(X
′)

MOVEB%: B0(k)NR(Y)→ ∃~t′iB1(k)NS(Y
′) for each ofM’s instruction %

where

X = 〈EK(〈t0, ξ0, 0, t1〉), EK(〈t1, 〈q, ξ〉, 0, t2〉), EK(〈t2, ξ2, 1, t3〉), EK(〈t4, B, 1, t5〉)〉
X ′ = 〈EK(〈t′0, ξ0, 0, t′1〉), EK(〈t′1, 〈q, ξ〉, 0, t′2〉), EK(〈t′2, ξ2, 0, t′3〉), EK(〈t′3, B, 1, t′4〉)〉
Y = 〈EK(〈t0, ξ0, 0, t1〉), EK(〈t1, 〈q, ξ〉, 0, t2〉), EK(〈t2, ξ2, 0, t3〉), EK(〈t4, B, 1, t5〉)〉
Y ′ = 〈EK(〈t0, ξ0, 0, t′1〉), EK(〈t′1, η, 0, t′2〉), EK(〈t′2, 〈q′, ξ2〉, 0, t3〉), EK(〈t4, B, 1, t5〉)〉

ifM’s instruction % is of the form qξ→q′ηR
Y ′ = 〈EK(〈t0, 〈q′, ξ0〉, 0, t′1〉), EK(〈t′1, η, 0, t′2〉), EK(〈t′2, η2, 0, t3〉), EK(〈t4, B, 1, t5〉)〉

ifM’s instruction % is of the form qξ→q′ηL

Role Regeneration Theory:

ROLA: Guy(G, k)Init(I)Secret(s)Failure(f)P (∗)
→ Guy(G, k)Init(I)Secret(s)Failure(f)A0(I, k, s, f)

ROLB: Guy(G, k)P (∗)→ Guy(G, k)B0(k)
ERASEA: A2(Y, k, s, f)→ P (∗)
ERASEB: B1(k)→ P (∗)

Figure 2: Bounded Memory Protocol Theory encoding the Turing Machine M.

11

4.2. Encoding Turing Machine’s Actions as a Bounded Memory Protocol

Given a Turing machine M and the encoding of the tape discussed above, we
encode its actions by means of bounded memory protocol calledPM, which is depicted
in detail in Figure 2.

Alice starts the computation by sending the message encoding the initial 3-cell
configuration of M to Bob. Bob simulates the computation of M by transforming
the message encoding that in state q the symbol ξ is being read into the new message
encoding that the state changed to q′, ξ was replaced by η, and that the head moved
to the right (resp. left), provided that qξ → q′ηR (resp. qξ → q′ηL) is an instruc-
tion of M. In one session Bob simulates one instruction of the machine, or, when
necessary, models extending of the tape. Alice also checks whether the accepting state
has been reached. In the modeling of the Turing machine computation, intruder plays
an essential part by intercepting, storing and sending messages encoding the machine
configuration. While the memory of the system used by the protocol PM is bounded,
intruder’s memory is unbounded enabling him to store the entire Turing machine tape
and computation.

We now describe the role of Alice (initiator) and Bob (responder) in detail. Both
Alice and Bob can input and output only messages of the form

〈EK(〈t0, α0, 0, t1〉), EK(〈t1, α1, 0, t2〉), EK(〈t2, α2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

where the first three components represent the chain of three cells, and the fourth com-
ponent is an auxiliary component that serves for extending the tape. This will be mod-
eled through Bob. Namely, when Bob receives the message encoding the last three
cells of the tape, he replies with the encoding denoting a new blank cell being added to
the right.

Alice’s Role. Assume that Alice is the initiator and her initial state contains the encod-
ing of the initial 3-cell configuration:

I = 〈EK(〈t0, $, 0, t1〉), EK(〈t1, 〈q,B〉, 0, t2〉), EK(〈t2, B, 1, t3〉), EK(〈t4, B, 1, t5〉)〉

Because of the initial configuration of the machine (2) the first component represents
the beginning of the tape and the third component represents the last cell, denoted by
the symbol 1. Notice that the last term does not share nonces with the first three. It will
be used for extending the tape.

The protocol starts by Alice updating all nonces ti to t′i, and sending the following
message to Bob, action UPDA in Figure 2:

X ′ = 〈EK(〈t′0, $, 0, t′1〉), EK(〈t′1, 〈q,B〉, 0, t′2〉), EK(〈t′2, B, 1, t′3〉), EK(〈t′4, B, 1, t′5〉)〉

At this point, she does not need to remember the previous terms containing the nonces
ti. That is, she erases her memory and is ready to store new facts containing the nonces
t′i. In particular, she is waiting for a message from Bob of the form:

〈EK(〈t0, α0, 0, t1〉), EK(〈t̃1, α1, 0, t̃2〉), EK(〈t2, α2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

12

By verifying its integrity with (t1 = t̃1) and (t̃2 = t2), Alice assumes that there is no
intrusion in the channel. If some αi is of the form 〈q0, ξ〉 containing the final state q0,
then Alice openly sends the secret s to Bob, formalized by actions RESA0, RESA1
and RESA2 in Figure 2. Otherwise, Alice sends a neutral message, see action RESA3
in Figure 2. Notice that in Y s in Figure 2 related to these rules it is the case that ξ 6= $
since, by assumption onM, the head cannot move to the cell marking the beginning
of the tape.

Notice that Alice’s role is given only for the encoding of the initial 3-cell configu-
ration. Alice only checks whether the nonces from the received message match. She
doesn’t compare any data received with what she had sent. During the attack, described
further below, Bob’s replies will be intercepted and stored by the adversary.

Bob’s role. The role of Bob is to transform the message received with the help of an
instruction from the given Turing machineM. Bob is expecting to receive a message
(presumably from Alice) of the form:

〈EK(〈t0, ξ0, 0, t1〉), EK(〈t̃1, 〈q, ξ〉, 0, t̃2〉), EK(〈t2, ξ2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

Bob verifies its integrity by (t1 = t̃1) and (t̃2 = t2), and follows one of three cases:

(1) (Extending the tape, action UPDB in Figure 2) For e2 = 1, i.e. for the encoding
of the last three cells of the tape, Bob replaces nonces t1 through t5 with the new ones,
and sends the following updated message to Alice

〈EK(〈t0, ξ0, 0, t′1〉), EK(〈t′1, 〈q, ξ〉, 0, t′2〉), EK(〈t′2, ξ2, 0, t′3〉), EK(〈t′3, B, 1, t′4〉)〉

which provides a new last cell in the chain of four cells. Notice that the fourth com-
ponent in the above reply refers to the new last cell in the configuration. In particular,
notice the nonces t′1, t

′
2 and t′3 linking the adjacent cells.

(2) (Moving the Head of the Machine to the Right, action MOVEB% in Figure 2)
For an instruction % of M of the form qξ → q′ηR, denoting: “if in state q looking
at symbol ξ, replace it by η, move the tape head one cell to the right, and go into
state q′”, Bob replaces nonces t1 and t2 with fresh nonces t′1 and t′2 respectively, to
mark the event of the head moving to the right and making a new visit to the right cell.
and he sends the following updated message

〈EK(〈t0, ξ0, 0, t′1〉), EK(〈t′1, η, 0, t′2〉), EK(〈t′2, 〈q′, ξ2〉, 0, t3〉), EK(〈t4, B, 1, t5〉)〉

to Alice encoding the new 3-cell configuration.

(3) (Moving the Head of the Machine to the Left, action MOVEB% in Figure 2)
For an M’s instruction % of the form qξ→ q′ηL, denoting: “if in state q looking at
symbol ξ, replace it by η, move the tape head one cell to the left, and go into state q′”,
Bob replaces nonces t1 and t2 with the new onces, and sends the following updated
message to Alice

〈EK(〈t0, 〈q′, ξ0〉, 0, t′1〉), EK(〈t′1, η, 0, t′2〉), EK(〈t′2, ξ2, 0, t3〉), EK(〈t4, B, 1, t5〉)〉

13

Remark 4. The above protocol is balanced. It can be formalized by a bounded mem-
ory protocol, see Figure 2. In particular, only terms of height fixed in advance are used.
Also, a fixed number of facts is used by the protocol participants. No new memory is
created in the system. Freshly created values are used to only update the facts in the
system configuration, that is, the old nonces are replaced by new ones.

The protocol formalization with bounded memory theories for the participants A
and B is given in Figure 2. The initial set of facts contains the facts Guy(A,K),
Guy(B,K), denoting agents Alice and Bob, and specifying that they share the un-
compromised key K, the fact Secret(s) denoting the secret s, the fact Failure(f)
representing the neutral message f (this will be used by Alice to mark that the ac-
cepting state hasn’t yet been reached). Finally,M’s initial configuration is encoded in
fact Init. In specifications of the role theories, for convenience we use various X and
Y abreviations and ξ and η variables for tape symbols. Both theories for A and for
B have the corresponding role generation rules ROLA and ROLB, which create new
sessions, as well as rules ERASEA and ERASEB, which delete role state predicates of
completed sessions. As previously discussed, this allows traces to have an unbounded
number of protocol sessions.

The machine computation is initiated by Alice’s role which relates to the initial
tape configuration, and is then simulated instruction per instruction through series of
Bobs roles. In each session Bob either simulates one of the machine instructions %
through MOVEB% rule, or extends the tape when necessary using UPDB rule. Bob
outputs messages encoding the updated machine configuration. These messages are
intercepted by intruder who, by storing and decomposing the components, is then able
to produce the message for Bob’s next session, i.e. for the simulation of the nextM’s
instruction. At the same time, each of the Bob’s output messages is forwarded to Alice
so that she can check whether the configuration if the accepting one, that is whether
the computation ends.

Since there is a MOVEB% rule for each instruction % ofM, the reduction is poly-
nomial on the number of instructions inM.

Finally notice that the initial set of facts, besides the names of the agents and the
encoding of initial tape, also contains three empty facts. One is used to create a protocol
role for Alice another for Bob and finally the third for running the protocol.

4.3. A Man-in-the-Middle Attack by Mallory

We now describe how a standard Dolev-Yao adversary can carry out an attack on the
protocol described above. Recall that the Dolev-Yao adversary acts as the network, that
is, all the messages are sent through the adversary and that his memory is unbounded.

Notice that, beacause of the form of messaegs that Alice and Bob exchange and
because of the encryption under the secret key K, by active eavesdropping Mallory
can accumulate terms of the form

EK(〈t1, α1, e1, t2〉) (3)

if and only if they are components of outputs generated by Alice or by Bob. We now
discuss the following attack on the above protocol:

14

Tape: $ · · · γ δ 〈q, ξ〉 β ι · · ·

Adversary’s Knowledge:
M(EK(〈t0, $, 0, t1〉)), . . . ,M(EK(〈ti, γ, 0, ti+1〉)),
M(EK(〈ti+1, δ, 0, ti+2〉)),M(EK(〈ti+2, 〈q, ξ〉, 0, ti+3〉),
M(EK(〈ti+3, β, 0, ti+4〉)),M(EK(〈ti+4, ι, 0, ti+5〉)), . . .

Application of action: qξ→q′ηR

Resulting Tape: $ · · · γ δ η 〈q′, β〉 ι · · ·

Adversary’s Knowledge:

M(EK(〈t0, $, 0, t1〉)), . . . ,M(EK(〈ti, γ, 0, ti+1〉)),
M(EK(〈ti+1, δ, 0, ti+2〉)),M(EK(〈ti+2, 〈q, ξ〉, 0, ti+3〉),
M(EK(〈ti+3, β, 0, ti+4〉)),M(EK(〈ti+4, ι, 0, ti+5〉)), . . .
M(EK(〈ti+1, δ, 0, t

′
i+2〉)),M(EK(〈t′i+2, η, 0, t

′
i+3〉),

M(EK(〈t′i+3, 〈q′, β〉, 0, ti+4〉))

Figure 3: Illustration of the evolution of the Adversary’s knowledge after a protocol session that modifies the
Turing Machine Tape. The facts colored in blue are the new facts learned by the adversary.

(1) In the first session, Mallory intercepts the initial message from Alice, stores it,
and resends it to Bob. While Bob responds, Mallory intercepts the message from Bob,
stores it, and resends it to Alice.

(2) For each of the next sessions, Mallory first intercepts the initial message from
Alice. Taking non-deterministically terms of the form (3) from his memory, Mallory
then composes a message of the form:

〈EK(〈t0, α0, 0, t1〉), EK(〈t̃1, α1, 0, t̃2〉), EK(〈t2, α2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

and sends it to Bob. If Bob accepts this message and responds with a transformed
one as described by the protocol, then Mallory intercepts this new message from Bob,
stores it, and resends it to Alice.

Recall that Alice releases the secret s after receiving the encoding of the final state
of the machine M. Since the machine configuration encoding involves fresh values
and is encrypted under the secret key K, only Bob is able to update the machine con-
figuration. Hence, Mallory will learn the secret s only if Bob outputs the encoding of
the accepting state of the machineM i.e. ifM terminates on the empty input.

Also recall that Alice’s role always relates to the initial tape configuration. Bob
simulates the machine computation, one instruction per session, extending the tape as
necessary. Bob’s replies encode the current, updated, machine configuration. Only in
the first session of the anomaly Mallory forwards to Bob the encoding of the initial
machine configuration. Instead, in the subsequent sessions Mallory sends to Bob the
message encoding the current machine configuration. This enables the simulation of
the machine computation, instruction per instruction through series of Bob’s roles. In
each of the sessions Mallory is able to reproduce the encoding of the updated machine
configuration. Namely, if in the previous session Bob simulated a move of the machine

15

head, Mallory resends his last message back to Bob. Otherwise, in case in the last
session Bob extended the tape, Mallory uses three EK-terms from Bob’s last message
and for the fourth EK-term Mallory can use some old term from her memory, e.g.
a term EK(〈t′′4 , B, 1, t′′5〉) from one of Alice’s messages. Although Alice and Bob
erase their memory forgetting what they learned from exchanged messages, Mallory
intercepts and stores all messages. Her memory is unbounded.

Figure 3 illustrates the knowledge that the adversary accumulates during a success-
ful run of the protocol. Notice that although the adversary only learns the encrypted
messages containing the new contents of the tape, he has all the contents of the re-
sulting tape. This is because the nonces ti+1 and ti+4 are not modified by Bob. This
intuition is formalized by the Lemma below.

Lemma 5. Suppose that a term of the form EK(〈t, 〈q, ξ〉, 0, t′〉) appears in the adver-
sary memory by active eavesdropping. Then there is a unique sequence of nonces t0,
t1,. . . , tn+2 and a chain of terms from the adversary’s memory

EK(〈t0, $, 0, t1〉), EK(〈t1, x1, 0, t2〉), EK(〈tj−1, xj−1, 0, tj〉),
EK(〈tj , 〈q, xj〉, 0, tj+1〉), EK(〈tj+1, xj+1, 0, tj+2〉), . . . , EK(〈tn, xn, 0, tn+1〉),
EK(〈tn+1, B, 1, tn+2〉)

such that

(a) tj = t, xj = ξ, and tj+1 = t′,

(b) M leads from the empty initial configuration to the configuration where the string
x1x2..xj ..xn, is written in cells 1, 2,..,j,..,n on the tape

$ x1 x2 · · xj · · xn . . .

and the j-th cell is scanned byM in state q.

Proof. By induction on the number of actions performed by Bob to output a message
one of the components of which is EK(〈t, 〈q, ξ〉, 0, t′〉). Notice that any term of the
form EK(〈t, 〈q, ξ〉, 0, t′〉) in Mallory’s memory comes from an intercepted message
since it is encrypted with the key K not known to Mallory. Also notice that Mallory
learns this term by decomposing protocol messages. As per protocol specification this
term is always accompanied by other three terms from the encoding.

For the base case, when the number of Bob’s actions is 0, a term of the form
EK(〈t, 〈q, ξ〉, 0, t′〉) must have been sent by Alice as a part of an encoding of the initial
machine configuration, i.e. as a part of a message of the form:

〈EK(〈t′′0 , $, 0, t′′1〉), EK(〈t′′1 , 〈q,B〉, 0, t′′2〉), EK(〈t′′2 , B, 1, t′′3〉), EK(〈t′′4 , B, 1, t′′5〉)〉

The first three terms in this message contain a sequence of nonces t′′0 , t
′′
1 , t
′′
2 , t
′′
3 and

from the desired chain of terms in Mallory’s memory corresponding to the empty com-
putation.

16

Assume that Bob has performed k actions encoding machine instructions or tape
extension and that there is a term of the form EK(〈t, 〈q, ξ〉, 0, t′〉) in Mallory’s mem-
ory. If this term comes form one of Alice’s messages, then the claim stands for the en-
coding of an empty computation, just like in the base case. In case the term is a part of a
message sent by Bob in some session, but not in the last one, then the claim follows by
inductive assumption. In the remaining case the term of the form EK(〈t, 〈q, ξ〉, 0, t′〉)
has been sent by Bob in the last session. Let’s assume that in the last session Bob
performed the action corresponding to machine head moving to the right, q′ξ′→ qξR.
The remaining cases are proven similarly. In the last session Bob sent the message of
the form:

〈EK(〈t0, ξ0, 0, t1〉), EK(〈t1, ξ1, 0, t〉), EK(〈t, 〈q, ξ〉, 0, t′〉), EK(〈t4, B, 1, t5〉)〉

This was necessarily a reply to a message of the form:

〈EK(〈t0, ξ0, 0, t2〉), EK(〈t2, 〈q′, ξ′〉, 0, t3〉), EK(〈t3, ξ, e2, t′〉), EK(〈t4, B, 1, t5〉)〉

encoding the tape cells from the previous machine configuration. Such message must
have been sent by Bob in the previous session. Since Mallory controls the network,
she had intercepted and stored this message, and was able to decompose it so that the
term EK(〈t2, 〈q′, ξ′〉, 0, t3〉) appears in her memory. Here we assume that Mallory
is actively eavesdropping, decomposing whatever she can. Applying the induction
hypothesis toEK(〈t2, 〈q′, ξ′〉, 0, t3〉) corresponds a sequence of nonces t′0, t′1,. . . , t′n+2

and the following chain of terms from Mallory’s memory

EK(〈t′0, $, 0, t′1〉), EK(〈t′1, x′1, 0, t′2〉), EK(〈t′j−1, x′j−1, 0, t′j〉),
EK(〈t′j , 〈q′, x′j〉, 0, t′j+1〉), EK(〈t′j+1, x

′
j+1, 0, t

′
j+2〉), . . . , EK(〈t′n, x′n, 0, t′n+1〉),

EK(〈t′n+1, B, 1, t
′
n+2〉)

where t′j−1 = t0, x′j′1 = ξ0, t′j = t2, x′j = ξ′, t′j+1 = t3, x′j+1 = ξ, and t′j+2 = t′,
such thatM leads from the empty initial configuration to the configuration where the
string x′1x

′
2..x
′
j ..x
′
n, is written in cells 1, 2,..,j,..,n on the tape and the j-th cell is

scanned by M in state q′. Then the following sequence of nonces t′0,. . . , t′j−1, t1, t,
t′j+2, . . . , t′n+2 and the following chain of terms from Mallory’s memory

EK(〈t′0, $, 0, t′1〉), EK(〈t′1, x′1, 0, t′2〉), EK(〈t′j−2, x′j−2, 0, t0〉),
EK(〈t0, ξ0, 0, t1〉), EK(〈t1, ξ1, 0, t〉), EK(〈t, 〈q, ξ〉, 0, t′〉), 〉
EK(〈t′, x′j+2, 0, t

′
j+3〉), . . . , EK(〈t′n, x′n, 0, t′n+1〉), EK(〈t′n+1, B, 1, t

′
n+2〉)

represent the computations ofM which leads from the empty initial configuration to
the configuration where the string x′1x

′
2..x
′
j−1ξ1, ξ, xj+2..x

′
n, is written in cells 1, 2,..,n

on the tape and the (j + 1)-st cell is scanned byM in state q.

Theorem 6. There is a Dolev-Yao attack on the above protocol if and only if the ma-
chineM terminates on the empty input.

Proof. We prove both directions.

17

(a) The direction from a terminating computation to an attack is straightforward by
induction on the length of the computation. The key of the encoding is the use
of nonces and the encryption under the secret key K which is not known to the
adversary. Only Bob is able to update the encoding of the machine configuration.
To each machine action corresponds a session of Bob’s role, with additional roles
for tape extension as necessary. When the machine terminates, i.e. reaches the final
state q0, Alice sends the secret s unencrypted. Therefore, Mallory is able to obtain
the secret.

(b) The inverse direction relies on Lemma 5. Mallory will learn the secret s only if
Alice receives the encoding of the accepting state of the machineM which must
contain a term of the formEK(〈t̃1, 〈q0, ξ〉, 0, t̃2〉). Since adversary controls the net-
work, in the case of a successful attack, a term of the form EK(〈t̃1, 〈q0, ξ〉, 0, t̃2〉),
must appear in the adversary’s memory. Then by Lemma 5, if a term of the form
EK(〈t̃1, 〈q0, ξ〉, 0, t̃2〉) appears in the adversary’s memory, then M leads from
the empty initial configuration to a final configuration where a cell is scanned in
state q0. That is, machineM terminates on the empty input.

Notice that in the above attacks the adversary in fact does not need to create/update
fresh values, but simply actively eavesdrop, that is intercept, decompose, compose and
copy messages.

Corollary 7. The existence of a Dolev-Yao attack is undecidable even for bounded
memory protocols, PM, where Alice and Bob are finite automata whom are allowed
to update nonces only, all actions by Alice and Bob are balanced, and only terms of
height fixed in advance are used by Alice, Bob, and the adversary (even if the actions
of the adversary are limited to decompose, compose, and copy).

Proof. Given a non-recursive recursively enumerable set S, and a sequence of Turing
machines Mn such that Mn terminates on the empty input iff n ∈ S, it suffices to
consider the corresponding bounded memory protocols PMn

.
Thus an upper bound on the memory of the Dolev-Yao adversary is not computable

from a bound on the memory used by a protocol. Moreover, based on peculiarities of
our encoding described in Section 4.2, we can express such a phenomenon in quantita-
tive terms.

Theorem 8. Whatever total recursive function h we take, we can construct a recursive
sequence of bounded memory protocols Qn so that

(a) For any n, there is a Dolev-Yao attack on the bounded memory protocol Qn.

(b) However, for any n starting from some n0, any Dolev-Yao adversary whose mem-
ory is bounded by h(n) is not capable of detecting an attack on the bounded mem-
ory protocol Qn.

Proof Given a total recursive function f , implemented as Qn we take the bounded
memory protocol PMn

described in Section 4.2, where Mn is a Turing machine termi-
nating on the empty input with the value f(n).

We assume that h is large enough to be an upper bound for all memories in question.

18

Given an n, the size of each of the current states of the intruder’s memory is sup-
posed to be bounded by h(n), which results in that the number of all different states
of his memory times the number of all different states of the memories of the other
participants is bounded by 2O(h(n)). Therefore, interacting with the participants within
the protocols PMn

, the bounded memory adversary can only perform at most 2O(h(n))

steps.
It suffices, therefore, to take a function f such that its time complexity is greater

than 2O(h(n)), for instance, Ω(22
h(n)

). Thus, the Dolev-Yao adversary will be able to
find an attack, as it can take any number of steps, while the Bounded Memory adversary
cannot find an attack. 2

The Theorem above implies that the Standard Dolev-Yao adversary cannot be con-
structively approximated by an infinite sequence of increasing memory Bounded Mem-
ory adversaries: for any amount of memory we give to the bounded memory adversary,
it is always possible to construct a bounded memory protocol that implements a func-
tion that requires more memory.

5. Undecidability Proof Revisited

In this Section we confirm that the secrecy problem is undecidable even if the mem-
ory of the protocol is bounded in an alternative approach. We revisit the undecidability
proof given in [DLMS04] and show that similar encoding can be obtained by using
bounded memory protocol theories. This is not obvious since in well-founded protocol
theories used in their encoding there is no bound on the memory of the (honest) partic-
ipants. Namely, an unbounded number of protocol sessions can run concurrently and
therefore participants are allowed to remember an unbounded number of facts denoting
their participation in protocol sessions and containing the information of the protocol
sessions in which they are participating. More formally, while our the rules of our
bounded memory protocol theories are all balanced, well-founded protocol theories
contain unbalanced rules, which are the source of undecidability of the reachability
problem in multiset rewriting systems.

Investigating whether one can adapt the encoding given in [CDL+99, DLMS04] to
use bounded memory protocols, instead of well-founded ones was left as future work
in our conference paper [KKNS13].

Durgin et al. [DLMS04] present an undecidability proof for protocol theories based
on the encoding of the existential Horn problem. It is know that the existential Horn
problem with no function symbols is undecidable [CLM81, DLMS04]. We now encode
the existential Horn problem using bounded memory protocols instead of the well-
founded ones used in [DLMS04].

In order to use memory bounded protocols we modify the theories from [DLMS04].
In particular we add role regeneration rules for each of the roles. Protocol theories in
[DLMS04] were specified by rules that contained exactly two facts in the pre- and
post-condition. Although these rules were balanced, the initialization theory and the
role generation theory were unbalanced enabling an unbounded number of protocol
sessions. In principle, this allows any number of sessions to run concurrently, which
is not possible in bounded memory theories. Nevertheless, there is a run simulating

19

the derivation in the Horn theory in which only one session runs at any given time.
In this run the standard Dolev-Yao adversary with unbounded memory is the initiator
of each session. He acts as the network intercepting each message and storing all the
intercepted data, while participants only share a secret key and do not need to remember
the data from previous sessions.

5.1. Encoding the Existential Horn Problem

An existential Horn clause is a formula of the form:

∀x1 · · · ∀xm. [α1 ∧ · · · ∧ αn ⇒ ∃y1 · · · ∃yk.β1 ∧ · · · ∧ βj] .

where α1, · · · ∧ αn, β1, · · ·βj are first-order atomic formulas. The existential Horn
problem is the problem of determining whether a formula is a consequence of an ex-
istential Horn clause theory, i.e., a set H of existential Horn clauses. Here we are
interested in formulas that are conjunctions of atomic first-order logic formulas. For
the inference of such a formula φ fromH, it sufices to check whether φ can be obtained
by a derivation derivationH ` φ, which is a sequence of formulas φ1, . . . , φn such that
φn = φ, and φi is either

a) φi ∈ H

b) φi ≡ β1 ∧ · · · ∧ βl for some φj ≡ α1 ∧ · · · ∧ αs, j < i and

∀~x[α1 ∧ · · · ∧ αs ⇒ ∃~y.β1 ∧ · · · ∧ βl] ∈ H

c) φi ≡ αk for some φj ≡ α1 ∧ · · · ∧ αk ∧ · · · ∧ αs, j < i

d) φi ≡ α1 ∧ · · · ∧ αl ∧ · · · ∧ αm ∧ · · · ∧ αs, for j1, . . . , jk < i

φj1 ≡ α1 ∧ · · · ∧ αl

. . .
φjk ≡ αm ∧ · · · ∧ αs

where ∀x1 · · · ∀xm. [α1 ∧ · · · ∧ αs ⇒ ∃~y.β1 ∧ · · · ∧ βj] ∈ H

The above rules correspond to application of a Horn clause fromH, conjunction elim-
ination and conjunction introduction, required to transform consequence of one Horn
clause into antecedent of another. It follows that, for derivations, the order of atomic
formulas on either side of a Horn clause is irrelevant.

Given a set of existential Horn clauses H, we construct a bounded memory proto-
col theory and define representations of formulas as encodings of formulas given by (4)
below. For such protocol theory, when combined with the standard Dolev-Yao adver-
sary theory given in Figure 1a, the adversary may learn the representation of a formula
if and only if that formula is a consequence of the given Horn theoryH.

To each Horn clause X from the given theoryH we associate a number of protocol
roles, P(H). Namely, to the clause

X ≡ ∀~x[α1 ∧ · · · ∧ αm ⇒ ∃~y.β1 ∧ · · · ∧ βi ∧ · · · ∧ βl]

20

correspond the role theories R(X), Di(X) for i = 1, . . . , l, C(X) and the role regen-
eration theory G(X), defined below. Role theoryR(X) corresponds to the application
of Horn clause X . Each role theory Di(X) corresponds to conjunction elimination
rule, needed to extract atomic formulas from the conjunctions. Role theory C(X) cor-
responds to conjunction introduction, allowing the set of atomic formulas to be com-
bined to produce the conjunction needed to apply another Horn clause. Formally, we
define these role theories for X as follows:

R(X) : AX
0 (k) NR(dα1 ∧ · · · ∧ αme)→ ∃~y.AX

1 (k) NS(dβ1 ∧ · · · ∧ βle)

Di(X) : BX,i
0 (k) NR(dβ1 ∧ · · · ∧ βi ∧ · · · ∧ βle)→ BX,i

1 (k) NS(dβie) ,
i = 1, . . . , l

C(X) : CX
0 (k) NR(dα1e)→ CX

1 (k, dα1e) NS(>)
CX

1 (k, dα1e) NR(dα2e)→ CX
2 (k, dα1 ∧ α2e) NS(>)

. . .
CX

i−1(k, dα1 ∧ · · · ∧ αi−1e) NR(dαie)→ CX
2 (k, dα1 ∧ · · · ∧ αie) NS(>)

. . .
CX

m−1(k, dα1 ∧ · · · ∧ αm−1e) NR(dαke)→ CX
m (k) NS(dα1 ∧ · · · ∧ αme)

G(X) : Guy(g, k) P (∗)→ Guy(g, k) AX
0 (k)

AX
1 (k)→ P (∗)

Guy(k) P (∗)→ Guy(k) BX,i
0 (k)

BX,i
1 (k)→ P (∗) , i = 1, . . . , l

Guy(g, k) P (∗)→ Guy(g, k) CX
0 (k)

CX
m (k)→ P (∗)

where the term > that represents ”true”, i.e. the empty conjunction, and dφe denotes
the encoding of a formula φ of the form

P1(t1,1, . . . , t1,i1) ∧ · · · ∧ Pj(tj,1, . . . , tj,ij)

into a term of type message as specified below:

dφe = Ek(〈P1.P2.Pj , t1,1, . . . , t1,i1 , . . . , tj,1, . . . , tj,ij 〉) . (4)

Here we assume that for each sequence of predicates P1, . . . , Pj that occurs on either
side of the given Horn clauses in H there is a constant symbol P1.P2.Pj in the
signature. In the above representation, encryption under the secret key k not known to
the adversary is needed for a faithful encoding of the theory. Otherwise the adversary
would be able to interfere with the atomic formulas.

However, intruder needs to extract atomic formulas from conjunctions. That is,
consequents of Horn clauses must be decomposed into their constituent atomic formu-
las, so that they can then be combined into antecedents of the next Horn clause in the
derivation. We therefore add to P(H) role theory R(Xi

m), and the role regeneration
theory G(Xi

m) for each of the following clauses:

Xi
m ≡ ∀~x[α1 ∧ · · · ∧ αi ∧ · · · ∧ αm ⇒ αi], i = 1, . . . ,m

21

where m = 2, . . . , b and b is the maximal number of atomic formulas in a consequent
of a clause inH. This way we obtain the following theories:

R(Xi
m) : A

Xi
m

0 (k) NR(dα1 ∧ · · · ∧ αme)→ A
Xi

m
1 (k) NS(dαie)

and
G(Xi

m) : Guy(g, k) P (∗)→ Guy(g, k) A
Xi

m
0 (k)

A
Xi

m
1 (k)→ P (∗)

We will now show that there is a connection between intruder knowledge of repre-
sentations of formulas and derivations of these formulas in the Horn theory. As usual,
terms in M -facts represent the knowledge of the adversary. In particular, fact M(dφe)
will denote that adversary has learnt the representation of formula φ, that is, dφe is
stored in his memory.

Let the initial configuration contain the following facts:

Guy(A,K), Guy(B,K),M(>), P (∗), P (∗)

Facts Guy(A,K), Guy(B,K) denote that Alice and Bob share the uncompromised
key K. Fact M(>) is used by the adversary to send empty conjunctions when needed.
One empty fact P (∗) serves for the network, i.e. for running the protocol. The second
empty fact P (∗) will be used by the role regeneration theory for the role states of
the single running session. It will be replaced by an empty fact when the session
terminates. Notice that all the role theories are responder roles and that the session runs
between an honest participant and the adversary who is the initiator of all sessions.

Theorem 9. Let P(H) be the encoding of the Horn Theory H into the bounded mem-
ory protocols as described above. The standard Dolev-Yao adversary can learn the
representation of a formula φ from a run of protocols P(H) with the initial configura-
tion Guy(A,K), Guy(B,K), M(>), P (∗), P (∗) if and only if φ is derivable from
H.

Proof We modify the proof from [DLMS04] to accommodate bounded memory pro-
tocols.

We first show that if H ` φ then M(dφe) appears in adversary’s memory. The
proof is by induction on the length of derivations. For the base case we consider a
formula φ ∈ H, that is the clause X ≡ true⇒ φ fromH, the corresponding protocol
role

R(X) : AX
0 (k) NR(>)→ AX

1 (k) NS(dφe)

and the role regeneration theory G(X). The adversary can obtain the factM(dφe) from
the following run with either Alice or Bob:

Guy(g, k) P (∗) → Guy(g, k) AX
0 (k)

M(>) → NR(>)
AX

0 (k) NR(>) → AX
1 (k) NS(dφe)

NS(dφe) → M(dφe)

(5)

22

For the induction step, we look at the derivation H ` φ of length n where the last
formula φn ≡ φ. We consider the possible cases, as per derivation definition. If
φ ∈ H, adversary can obtain the fact M(dφe) as in the base case above.

Let φ be the result of applying the Horn clause X ≡ α1 ∧ · · · ∧ αs ⇒ ∃~z.φ(~z) to
a formula φj ≡ α1 ∧ · · · ∧αs, where j < i. From the inductive hypothesis applied to
the derivationH ` φj of lower length j, the adversary knows the representation of φj ,
i.e.M(dα1∧· · ·∧αse) appears in adversary’s memory. From the following consecutive
run of roles R(X1

s), . . . , R(Xs
s), adversary learns representations of atomic formulas

of φj .

Guy(g, k) P (∗) → Guy(g, k) A
X1

s
0 (k)

M(dα1 ∧ · · · ∧ αse) → NR(dα1 ∧ · · · ∧ αse)
A

X1
s

0 (k) NR(dα1 ∧ · · · ∧ αse) → A
X1

s
1 (k) NS(dα1e)

NS(dα1e) → M(dα1e)
A

X1
s

1 (k) → P (∗)
Guy(g, k) P (∗) → Guy(g, k) A

X2
s

0 (k)
M(dα1 ∧ · · · ∧ αse) → NR(dα1 ∧ · · · ∧ αse)

A
X2

s
0 (k) NR(dα1 ∧ · · · ∧ αse) → A

X2
s

1 (k) NS(dα2e)
NS(dα2e) → M(dα2e)
A

X2
s

1 (k) → P (∗)
. . .

Guy(g, k) P (∗) → Guy(g, k) A
Xs

s
0 (k)

M(dα1 ∧ · · · ∧ αse) → NR(dα1 ∧ · · · ∧ αse)
A

Xs
s

0 (k) NR(dα1 ∧ · · · ∧ αse) → A
Xs

s
1 (k) NS(dαse)

NS(dαse) → M(dαse)
Hence, facts M(dα1e), . . . ,M(dαse) appear in adversary’s memory.

Now, from the below run, the adversary is able to learn M(dφe):

Guy(g, k) P (∗) → Guy(g, k) CX
0 (k)

M(dα1e) → NR(dα1e)
CX

0 (k) NR(dα1e) → CX
1 (k, dα1e) NS(>)

NS(>) → M(>)
M(dα2e) → NR(dα2e)

CF
1 (k, dα1e) NR(dα2e) → CF

2 (k, dα1 ∧ α2e) NS(>)
NS(>) → M(>)

M(dα3e) → NR(dα3e)
. . .

M(dαse) → NR(dαse)
CX

s−1(k, dα1 ∧ · · · ∧ αs−1e) NR(dαse) → CX
s (k) NS(dα1 ∧ · · · ∧ αse)

CX
s (k) → P (∗)

Guy(g, k) P (∗) → Guy(g, k) AX
0 (k)

NS(dα1 ∧ · · · ∧ αse) → M(dα1 ∧ · · · ∧ αse)
M(dα1 ∧ · · · ∧ αse) → NR(dα1 ∧ · · · ∧ αse)

AX
0 (k) NR(dα1 ∧ · · · ∧ αse) → AX

1 (k) NS(dφe)
NS(dφe) → M(dφe)

23

The above run contains the roles R(X), C(X) and the role regeneration theory G(X)
corresponding to clause X .

Notice that there is enough memory in the system so that all the above rules are
applicable. More precisely, one empty fact is used for the network and the other for
role state predicates. Since only one role is active at a time that is enough memory for
the whole run.

The case when φ is obtained by the conjunction elimination rule, φ = αi, reduces
to the above case for the clause Xi

m.
For the remaining case of the application of conjunction introduction rule to obtain

φ, it follows that φ is the antecedent of some clause X ∈ H. Adversary can therefore
learn the representation of φ by initiating a role C(X) corresponding to that clause.

Next we show that if from a run of protocol theories P(H) the adversary learns
M(dφe) then H ` φ. The proof is by induction on the length of the run, i.e., the
number of roles. Since we assume that the key K is uncompromised, initially no
facts M(dφe) appear in adversary’s memory. The adversary can only learn M(dφe)
from some message sent by the rules in P(H). The shortest such run is similar to the
sequence of rules (5) and corresponds to the clause true ⇒ φ from H. Trivially it is
the case thatH ` φ.

We then consider the run of n protocol roles from P(H) in which the adversary
learnsM(dφe). Since the system’s memory is bounded, only one role can run at a time.
Role state predicates of previous session have been forgotten by the role regeneration
rules and the last role in the run, Rn, has started executing. We assume that after the
first n − 1 roles the adversary knows {M(dφ1e), . . . ,M(dφke)}. By the induction
hypothesis we have H ` {φ1, . . . , φk}. As per the construction of protocol theories
P(H) from the Horn theory H, role Rn is either R(X), Di(X), C(X) or G(X) for
some clause X ∈ H, or X ≡ Xi

m, for Xi
m ≡ ∀~x[α1 ∧ · · · ∧ αi ∧ · · · ∧ αm ⇒ αi].

If the roleRn is aR(X) role, then X is the clause φi ⇒ ∃~yφ for some i ∈ {1, . . . , k}
and because ofH ` φi we haveH ` φ.

Roles Di(X) andR(Xi
m) correspond to the logical axiom

A1 ∧ · · · ∧Ai ∧ · · · ∧Aj ⇒ Ai .

This role represents the application of above axiom to a formula from {φ1, . . . , φk}
which results in φ. FromH ` {φ1, . . . , φk} and the above axiom it follows thatH ` φ.

If the role Rn is a C(X) role and all its rules have been used in the run, then F is
the logical axiom

A1 ∧ · · · ∧Ai ⇒ (A1 ∧ · · · ∧Ai)

for some i ∈ {1, . . . , k}, where a number of formulas implies their conjunction. In case
the role C(X) has not finished, i.e. the last rule of the role has not been used in the run,
and similarly in the case of role Rn being G(X) for some X , no new representations
of formulas are exchanged. Consequently M(dφe) ∈ {M(dφ1e), . . . ,M(dφke)} and
henceH ` {φ}. 2

Notice that in the above interaction with the protocol run the adversary does not
need to create fresh values. He only needs to intercept and send messages.

24

The next Lemma shows that the encoding of the given Horn theory into protocol
theories is polynomial, and that the size of the facts in the obtained protocol theories is
linearly bounded.

Lemma 10. The construction of protocol theories P(H) from the Horn theory H is
computable in polynomial time. Furthermore, if the formulas in H have the maximum
term size bounded by s, then the size of facts appearing in the run of P(H) from which
the adversary can learn the representation of a formula φ ∈ H is bounded by f(s)
where f is a linear function of s.

Proof Let H = {F1, . . . , Fn} be a Horn theory and let m be the bound on the
number of atomic formulas in a conjunction in any of the clauses from H. To each
clause in H correspond one R(F), one C(F), one G(F) theories, and up to m Di(F)
theories. Each theory R(F) and Di(F) has a single rule, each theory C(F) has up
to m rules while each theory G(F) has a maximum of 2m + 4 rules. Therefore the
construction of protocol theories P(H) is polynomial in n and m.

Consider a run ofP(H) from which the adversary learns the representation of a for-
mula φ ∈ H. Let s be the maximum term size appearing in the Horn theory H, where
we count one for each predicate symbol, each term symbol and each conjunction. Re-
call that the size of a fact is the total number of term and predicate symbols it contains.
As per the construction of P(H) and the run in which the adversary learns dφe (see
proof of Theorem 9), facts of the largest size have the form of a predicate over the
representation of a formula fromH, e.g., CF

k−1(dφ1∧· · ·∧φke), NS(dφ1∧· · ·∧φke)
or M(dφ1 ∧ · · · ∧ φke). By Definition 4 the number of predicate and term symbols in
a representation of a formula from H is at most s + 2, when counting the key and the
encryption. Therefore the size of facts appearing in the run is bounded by s+ 3, i.e. it
is linearly bounded with respect to s. 2

Durgin et al. [DLMS04] show that the existential Horn problem is undecidable even
when no function symbols are allowed. The following result is a direct consequence of
this fact and of Theorem 9.

Corollary 11. The existence of a Dolev-Yao attack is undecidable even for bounded
memory protocols, where only terms of height fixed in advance are used by partici-
pants and the adversary (even if the actions of the adversary are limited to intercept
messages, copy and send).

6. Related Work

This paper strengthens the undecidability proof given in [CDL+99, DLMS04].
In particular, the proof in [CDL+99, DLMS04] uses an encoding with well-founded
protocol theories, whereas our proof uses an encoding with bounded memory proto-
cols. While in bounded memory protocols the memory of the honest participants is
bounded, in well-founded protocols it is possible for the honest participants to have
an unbounded memory. This is in fact the case in the undecidability proof given in
[CDL+99, DLMS04]. The proof relies on an unbounded number of protocol sessions.
Moreover, all these protocols sessions are created before any sessions starts executing.

25

Hence participants require an unbounded memory to remember in which protocol ses-
sions they are participating. On the other hand, in our proof, Alice and Bob participate
in one protocol session at a time. Whenever one is finished, they re-use their memory
to participate in the subsequent protocol session. This difference is crucial, as with our
proof, we can infer that there is no way to compute an upper bound on the memory of
the adversary from the memory bounds of the participants, demonstrating further the
hardness of the secrecy problem.

Our paper is closely related to frameworks based on multiset rewriting systems
used to specify and verify security properties of protocols [AL00, ALV03, CKRT05,
CLS03, DLMS04, RT03]. Assumptions used by these frameworks reflect open systems
where an intruder tries to attack the participants of the system by manipulating the
transmitted messages. The related security problems consider a powerful intruder that
has an unbounded memory and that can, for example, accumulate messages at will. As
well as considering such an intruder, in addition we study the intruder with bounded
memory. With our bounded memory intruder, we can imagine having a system where
(honest and dishonest) agents are in a closed room and collaborate. We assume that
all agents, including inside adversaries, have bounded memory, technically imposed
by the use of balanced actions and facts of bounded size. Moreover, we compare the
strengths of these intruder models in relation to the secrecy problem with bounded
memory protocols.

The complexity results for protocol insecurity obtained in [ALV03, RT03] assume
no bound on the size of adversary messages. The proofs rely exactly on the nature
of adversary rules, namely composition and decomposition rules, and do not apply
to general rewriting systems. In our bounded memory systems and bounded mem-
ory adversaries we do assume a bound on the size of facts. This condition normally
appears for example, in the specification of administrative processes, where only to-
kens are used and no function symbols. [KKN+12]. Although lifting this bound could
make sense if no function symbols were allowed, the bound on the depth of terms is
deeply embedded in the semantics of our balanced systems. This bound is needed for
our [KKNS] PSPACE-complete complexity result for the reachability problem for bal-
anced systems. Moreover, it was shown in [DLMS04] that, with no bound on the size
of facts, the reachability problem is undecidable even if the system is balanced.

In this paper, we do not make any assumptions on protocols nor on the format of the
exchanged messages. We only bound the size of messages exchanged, number of con-
current protocol sessions and the amount of memory of the bounded memory intruder.
Even restricting to balanced protocol theories is not an assumption on protocols, as by
using empty facts, it is possible to transform a unbalanced protocol theory into a bal-
anced one. It is possible, however, to recover the decidability of the secrecy problem if
further assumptions on the protocol are made even with an unbounded memory intruder
and with unbounded number of parallel protocol sessions. For instance, [RS03] shows
that for protocols tagging mechanisms, the secrecy problem is decidable. [CWZ07]
proposes a general technique to construct safe protocols by using digital signatures
linked to protocol sessions. Also [ADK08] proposes a general technique to construct a
secure protocol by using both digital signature and dynamic tagging mechanisms.

Harrison et al. present a formal approach to access control [HRU75] and faithfully
encode a Turing machine in their system. However, in contrast to our encoding, they

26

use a non-commutative matrix to encode the sequential, non-commutative tape of a
Turing machine. In their proofs, the non-commutative nature of the encoding plays an
important role. We, on the other hand, encode Turing machine tapes by using com-
mutative multisets. Specifically, they show that if no restrictions are imposed to the
systems, the reachability problem is undecidable.

Much work on reachability related problems has been done within the Petri nets
community, see e.g., [EN94]. Specifically, we are interested in the coverability problem
which is closely related to the reachability problem in multiset rewrite systems. To the
best of our knowledge, no work that captures exactly the balanced condition has yet
been proposed. It does not seem possible to provide direct, faithful reductions between
our balanced systems and Petri nets.

7. Conclusions

This paper shows that the memory of the adversary cannot be inferred from the
memory bounds of the participants (Theorem 8). This is accomplished by propos-
ing a novel undecidability proof by encoding Turing machines by means of bounded
memory protocols. This result confirms the hardness of protocol security. It answers
negatively an open problem left in [KKNS]. We further confirm the undecidability
of the secrecy problem for bounded memory protocols and the standard Dolev-Yao
adversary by revisiting the encoding the existential Horn implication problem shown
in [CDL+99, DLMS04] and demonstrating that this problem can also be encoded by
means of Bounded Memory Protocols.

Together with Carolyn Talcott, we are investigating the use of the computational
tool Maude [CDE+07] for the specification and model-checking of regulated pro-
cesses, such as administrative processes [KKN+12].

Another direction that we are currently investigating is the extension of our model
with continuous time. In particular, systems that can create fresh values and mention
continuous time are of great interest to protocol security. For instance, many distance
authentication protocols [MPP+07, BC94] rely on timing measures. Thus extending
our model with continuous time and determining decidable fragments, e.g., balanced
systems, is of great interest for the verification of such protocols.

Acknowledgments: We thank Elie Bursztein, Iliano Cervesato, Patrick Lincoln,
Joshua Guttman, Catherine Meadows, Dale Miller, John Mitchell, Paul Rowe, and Car-
olyn Talcott for helpful discussions. This material is based upon work supported by the
MURI program under AFOSR Grant No: FA9550-08-1-0352 and upon work supported
by the AFOSR MURI “Science of Cyber Security: Modeling, Composition, and Mea-
surement”. Additional support for Scedrov from NSF Grant CNS-0830949 and from
ONR grant N00014-11-1-0555. Nigam was partially supported by the Alexander von
Humboldt Foundation and CNPq. Kanovich was partially supported by the EPSRC.

[ADK08] Myrto Arapinis, Stéphanie Delaune, and Steve Kremer. From one ses-
sion to many: Dynamic tags for security protocols. In Proceedings of the
15th International Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning, LPAR ’08, pages 128–142, Berlin, Heidelberg,
2008. Springer-Verlag.

27

[AL00] Roberto M. Amadio and Denis Lugiez. On the reachability problem in
cryptographic protocols. In CONCUR ’00: Proceedings of the 11th In-
ternational Conference on Concurrency Theory, pages 380–394, London,
UK, 2000. Springer-Verlag.

[ALV03] Roberto M. Amadio, Denis Lugiez, and Vincent Vanackère. On the sym-
bolic reduction of processes with cryptographic functions. Theor. Comput.
Sci., 290(1):695–740, 2003.

[BC94] Stefan Brands and David Chaum. Distance-bounding protocols. In Work-
shop on the theory and application of cryptographic techniques on Ad-
vances in cryptology, EUROCRYPT ’93, pages 344–359, Secaucus, NJ,
USA, 1994. Springer-Verlag New York, Inc.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı́-Oliet, José Meseguer, and Carolyn Talcott. All About Maude: A
High-Performance Logical Framework. Springer, 2007.

[CDL+99] Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and
Andre Scedrov. A meta-notation for protocol analysis. In CSFW, pages
55–69, 1999.

[CKRT05] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Tu-
ruani. An NP decision procedure for protocol insecurity with XOR. Theor.
Comput. Sci., 338(1-3):247–274, 2005.

[CLM81] Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded
implicational dependencies and their inference problem. In Proceedings
of the thirteenth annual ACM symposium on Theory of computing, STOC
’81, pages 342–354, New York, NY, USA, 1981. ACM.

[CLS03] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solv-
ing and insecurity decision in presence of exclusive or. In LICS ’03: Pro-
ceedings of the 18th Annual IEEE Symposium on Logic in Computer Sci-
ence, page 271, Washington, DC, USA, 2003. IEEE Computer Society.

[CWZ07] Véronique Cortier, Bogdan Warinschi, and Eugen Zalinescu. Synthetiz-
ing secure protocols. In Joachim Biskup and Javier Lopez, editors, ES-
ORICS, volume 4734 of Lecture Notes in Computer Science, pages 406–
421. Springer, 2007.

[DLMS04] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov.
Multiset rewriting and the complexity of bounded security protocols. Jour-
nal of Computer Security, 12(2):247–311, 2004.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets - a
survey. Bulletin of the EATCS, 52:244–262, 1994.

28

[HRU75] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. On pro-
tection in operating systems. In SOSP ’75: Proceedings of the fifth ACM
symposium on Operating systems principles, pages 14–24, New York, NY,
USA, 1975. ACM.

[KKN+12] Max I. Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, Car-
olyn L. Talcott, and Ranko Perovic. A rewriting framework for activi-
ties subject to regulations. In Ashish Tiwari, editor, RTA, volume 15 of
LIPIcs, pages 305–322. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2012.

[KKNS] Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, and Andre Scedrov.
Bounded memory Dolev-Yao adversaries in collaborative systems. Inf.
Comput. Accepted for Publication.

[KKNS13] Max I. Kanovich, Tajana Ban Kirigin, Vivek Nigam, and Andre Scedrov.
Bounded memory protocols and progressing collaborative systems. In
Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS,
volume 8134 of Lecture Notes in Computer Science, pages 309–326.
Springer, 2013.

[KRS09] Max Kanovich, Paul Rowe, and Andre Scedrov. Policy compliance in
collaborative systems. In CSF ’09: Proceedings of the 2009 22nd IEEE
Computer Security Foundations Symposium, pages 218–233, Washington,
DC, USA, 2009. IEEE Computer Society.

[KRS11] Max I. Kanovich, Paul Rowe, and Andre Scedrov. Collaborative planning
with confidentiality. J. Autom. Reasoning, 46(3-4):389–421, 2011.

[MPP+07] Catherine Meadows, Radha Poovendran, Dusko Pavlovic, LiWu Chang,
and Paul F. Syverson. Distance bounding protocols: Authentication logic
analysis and collusion attacks. In Radha Poovendran, Sumit Roy, and Cliff
Wang, editors, Secure Localization and Time Synchronization for Wireless
Sensor and Ad Hoc Networks, volume 30 of Advances in Information Se-
curity, pages 279–298. Springer, 2007.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for au-
thentication in large networks of computers. Commun. ACM, 21(12):993–
999, 1978.

[RS03] R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable with
unbounded nonces as well. In Proceedings, Foundations of Software Tech-
nology and Theoretical Computer Science (FST TCS 2003), volume 2914
of Lecture Notes in Computer Science, pages 363–374. Springer, 2003.

[RT03] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with a fi-
nite number of sessions and composed keys is NP-complete. Theor. Com-
put. Sci., 299(1-3):451–475, 2003.

29

	Introduction
	Preliminary: Configurations, Actions and Balanced Actions
	Balanced Actions, Empty Facts and Nonce Updates

	Bounded Memory Protocols and Adversaries
	Bounded Memory Protocols
	Standard Dolev-Yao and Bounded Memory Dolev-Yao Adversaries
	Complexity Results for the Secrecy Problem

	Protocol security is very undecidable: A bound on the adversary cannot be inferred from a bound on a protocol
	Encoding of Turing Machine Tapes
	Encoding Turing Machine's Actions as a Bounded Memory Protocol
	A Man-in-the-Middle Attack by Mallory

	Undecidability Proof Revisited
	Encoding the Existential Horn Problem

	Related Work
	Conclusions

