
Statistical Model Checking of Distance Fraud Attacks on the
Hancke-Kuhn Family of Protocols

Musab A. Alturki
KFUPM, Saudi Arabia

Runtime Verification Inc., USA
musab@kfupm.edu.sa

Max Kanovich
University College London, UK
NRU HSE, Moscow, Russia
m.kanovich@ucl.ac.uk

Tajana Ban Kirigin
Department of Mathematics
University of Rijeka, Croatia

bank@math.uniri.hr

Vivek Nigam
Federal University of Paraíba, Brazil

fortiss, Germany
vivek@ci.ufpb.br

Andre Scedrov
University of Pennsylvania, USA

NRU HSE, Russia
scedrov@math.upenn.edu

Carolyn Talcott
SRI International, USA

clt@csl.sri.com

ABSTRACT

Distance-bounding (DB) protocols protect against relay attacks on
proximity-based access control systems. In a DB protocol, the ver-
ifier computes an upper bound on the distance to the prover by
measuring the time-of-flight of exchanged messages. DB protocols
are, however, vulnerable to distance fraud, in which a dishonest
prover is able to manipulate the distance bound computed by an
honest verifier. Despite their conceptual simplicity, devising a for-
mal characterization of DB protocols and distance fraud attacks that
is amenable to automated formal analysis is non-trivial, primarily
because of their real-time and probabilistic nature. In this work,
we introduce a generic, computational model, based on Rewriting
Logic, for formally analyzing various forms of distance fraud, in-
cluding recently identified timing attacks, on the Hancke-Kuhn
family of DB protocols through statistical model checking. While
providing an insightful formal characterization on its own, the
model enables a practical formal analysis method that can help
system designers bridge the gap between conceptual descriptions
and low-level designs. In addition to accurately confirming known
results, we use the model to define new attack strategies and quan-
titatively evaluate their effectiveness under realistic assumptions
that would otherwise be difficult to reason about manually.

CCS CONCEPTS

• Security and privacy → Formal methods and theory of se-

curity; Logic and verification; Access control; • Computer

systems organization → Embedded and cyber-physical sys-

tems; • Software and its engineering →Model checking;

KEYWORDS

Distance-bounding protocols, Distance fraud, Probabilistic rewrit-
ing, Statistical model checking,Maude

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CPS-SPC ’18, October 19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5992-4/18/10. . . $15.00
https://doi.org/10.1145/3264888.3264895

ACM Reference Format:

Musab A. Alturki, Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre
Scedrov, and Carolyn Talcott. 2018. Statistical Model Checking of Distance
Fraud Attacks on the Hancke-Kuhn Family of Protocols. In CPS-SPC ’18:
2018 Workshop on Cyber-Physical Systems Security and PrivaCy Oct. 19,
2018, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3264888.3264895

1 INTRODUCTION

Proximity-based access is a typical security requirement in many
real-world cyber-physical systems, e.g., smart-card gate-access con-
trol systems, contactless payment systems, IoT networks [28], etc.
Proximity can also play an important role establishing trust rela-
tions needed to authenticate communication in local peer to peer
networks. Proximity-based access, however, is well-known to be
vulnerable to relay attacks, in which an attacker relays messages
between a verifier (e.g., a card reader) and a prover (e.g., an NFC
tag), maliciously extending the effective range of communication.
To protect against relay attacks, distance-bounding (DB) protocols
have been introduced [11, 17].

In a DB protocol, the verifier computes an upper bound on the
distance to the prover by measuring the time needed for a signal
to travel to the prover and back. Since a signal’s velocity cannot
exceed the speed of light, an upper bound on the distance to the
prover can be computed. The round-trip time is measured through
a rapid bit exchange, in which the verifier sends a challenge bit
to the prover and the prover responds as quickly as possible with
the corresponding response bit. Since relaying challenges and re-
sponses during this phase introduces relatively significant delays,
an attacker’s ability to mount a relay attack is severely limited.

DB protocols are, however, susceptible to distance fraud, inwhich
a dishonest prover is able to manipulate the distance bound com-
puted by an honest verifier to make himself appear closer than he
actually is, causing the verifier to falsely accept the prover. Dis-
tance fraud attacks are timing attacks that are mounted without
colluding with any external entity, which renders them particu-
larly dangerous. One category of attacks that can lead to distance
fraud is guessing attacks, in which the attacker attempts to cor-
rectly guess the response to the verifier’s challenge [11]. Guessing
can potentially be used to send out a response in advance (before
the challenge arrives) so that the measured round-trip time is re-
duced. A second category of distance fraud that has been recently

https://doi.org/10.1145/3264888.3264895
https://doi.org/10.1145/3264888.3264895
https://doi.org/10.1145/3264888.3264895

identified is the in-between-ticks (IBT) attack [19], which exploits
the computational limitations of a verifier and the differences be-
tween the physical time and the discrete time of the verifier’s clock.
Both attack categories build on how sensitive DB protocols are
to timing of events, since the slightest timing manipulations can
result in significant errors in computing the distance (1 ns � 15 cm).
Although both attack categories apply to the rapid bit exchange
phase of almost all DB protocols, the Hancke-Kuhn protocol [17]
and its variants (including [7, 21, 26] to name a few) are particu-
larly susceptible. This class of protocols, to which we refer as the
Hancke-Kuhn family of protocols, denoted HK , is characterized
by using a public hash function to generate the shared response
strings and having a lightweight verification phase that does not
require opening commit messages or verifying signatures.

Although guessing attacks, in particular, were identified when
the first DB protocol was proposed [11], little has been done since
then to investigate formally and systematically their different strate-
gies and countermeasures. Appropriately timing guessed responses
and using different guessing strategies can significantly affect the
chances of successfully mounting a guessing attack. Moreover, as is
typical of manual analysis, the analytical models developed by hand
of the recently identified IBT attacks [19] had to rely on some sim-
plifying assumptions to make the analysis tractable. Furthermore,
these and most other formal models are necessarily high-level and
non-executable, providing only some theoretical guarantees that
may not be realizable in a lower-level design or implementation. Ex-
ecutability is particularly important as DB protocols are notorious
for being hard to implement in practice. Manually encoding various
attack strategies and investigating their effectiveness while taking
into account operational details of the protocol and the threat model
can be too labor-intensive and is heavily prone to human error.

In this work, we address these limitations by introducing a for-
mal model based on probabilisitic rewrite theories [3] for formally
analyzing various forms of distance fraud attacks onHK , which
has proven non-trivial due primarily to their real-time and proba-
bilistic nature, despite their conceptual simplicity. Themodel is both
timed and probabilistic, so that randomized behaviors, environment
uncertainties (such as noise) and timing of events can formally be
described and analyzed. Furthermore, the model is generic and ver-
satile, capturing a variety of possible behaviors and attacker models.
The model is also executable, enabling quick prototyping of differ-
ent designs and configurations and facilitating automated analysis.
UsingMaude [13] and PVeStA [4], efficient formal analysis of quan-
titative properties, including probabilities, can be performed using
statistical model checking. This methodology provides an efficient
and automatic means of verifying complex systems without having
to make simplifying assumptions that are usually needed for full
probabilistic analysis to be tractable.

Using this model, we show how to accurately and mechani-
cally confirm known results about simple guessing and IBT attacks
that were previously shown through manual (and in many cases
non-trivial) analysis. We then generalize some of these results to
situations involving different levels of noise and acceptance condi-
tions. Additionally, we use the model to define new guessing-ahead
attack strategies that have not been investigated before, and then
quantitatively evaluate their effectiveness under realistic assump-
tions involving noise. Moreover, we investigate the interplay of

the two attack categories of guessing and IBT attacks. We show,
for instance, that certain realistic guessing-ahead attack strategies
can significantly benefit from exploiting the IBT vulnerability and
mount a successful attack with probability as high as 60% without
being detected by the verifier. In general, the analysis enabled by
our model provides deeper insights on how attack strategies com-
pare against each other in realistic settings. Moreover, it generally
demonstrates how quantitative evaluation based on formal models
of DB protocols can be immensely useful.

Contributions. The main contributions are summarized below:
(1) A formal characterization of HK protocols that is both

generic and computational, enabling automated reasoning
about various distance fraud attacks in realistic settings;

(2) An efficient and practical formal analysis method than can
help system designers realistically assess distance fraud vul-
nerabilities and experiment with their designs, bridging the
gap between high-level formal descriptions and low-level
implementations;

(3) Automated confirmation of known distance fraud vulnerabil-
ities, which were previously shown through manual analysis,
often assuming idealized behaviors and environments;

(4) A new taxonomy of guessing-ahead attack strategies and
new results about their effectiveness with and without the
IBT vulnerability in noisy channels.

The rest of the paper is organized as follows. In Section 2, we
describe the original Hancke-Kuhn protocol along with distance
fraud attacks, followed by an overview of related work in Section 3.
Section 4 generally introduces our rewriting model ofHK proto-
cols. Then, in Section 5, we define the properties to be analyzed.
After that, Section 6 discusses statistical model checking results
for guessing and guessing-ahead attacks, while Section 7 discusses
those results for the IBT vulnerability. The paper concludes with a
summary and a discussion of future work in Section 8.

2 DISTANCE-BOUNDING PROTOCOLS

Distance-bounding protocols aim to enhance traditional authenti-
cation by providing additional assurance in users proximity. Mo-
tivation for such requirements is discussed in detail in [17]. Vul-
nerabilities such as relay attacks can only be addressed by tight
integration into the physical layer of the communication protocol.

The goal of a distance-bounding protocol is to ensure access to
some resource to valid provers that are within a specified distance
bound, and, at the same time, reject access to provers that are
located outside of the distance bound perimeter.

There are typically three phases of a DB protocol, an initializa-
tion or a setup phase, during which nonces and/or commitments are
calculated and/or exchanged, followed by a distance measurement
phase that establishes the physical distance, and a finalizing phase
used to check commitments, i.e., confirm identification. The dis-
tance measurement phase is the essential part of any DB protocol.
Both guessing and in-between-ticks attacks, as the main focus of
our analysis, are due to failures in the distance measurement phase.

2.1 The Hancke-Kuhn Protocol

As a DB protocol, the Hancke-Kuhn (HK) protocol [17] aims to
ensure that the prover, P , is in the vicinity of the verifier, V . This

protocol assumes that the prover and the verifier share a long term
secret key, K , and a public hash function, h. In the initial (setup)
phase of the protocol the verifier and the prover generate nonces
NV andNP which are used to calculate a sequence of 2n bits usingK
and h: R01, . . . ,R

0
n | |R

1
1, . . . ,R

1
n, R

j
i ∈ {0, 1}. The setup phase of HK

protocol is followed by a series of n single-bit exchanges, defined by
the following procedure: To a random challenge bit Ci sent by the
verifier in the ith round, the prover instantly replies with either R0i ,
in case Ci = 0, or R1i , in case Ci = 1. At the same time, the prover
discards the corresponding other bit, R1i or R

0
i . This way, the prover

reveals only half of all the bits derived in the initial phase. For each
round, the verifier marks the time when a challenge bit is sent, and
the time the response is received.

In the last phase of the protocol, the verifier computes his dis-
tance from the prover and checks that the responses are correct. The
verifier grants access to the prover if all time tests for bit exchanges
are successful, i.e., do not exceed the predefined distance bound,
and if all n bits are correctly exchanged. Keeping in mind potential
errors, due to e.g., noise, the verifier’s decision can be parametrised
so that access is granted if the time-test is satisfied in a number of
rounds, e.g., in a simple majority of rounds, and if only a number of
response bits, k out of n, are correct. Different acceptance criteria
are further explored when we describe the rewriting model of DB
protocols in Section 4.

2.2 Distance Fraud Attacks

Guessing Attacks. The responder involved in the distance mea-
surement phase of a DB protocol can be an attacker, who does
not share the relevant secrets, including the secret key K , with
the verifier, as well as a dishonest prover, having access to the
shared secrets. An attacker with no access to the shared secrets
may try to successfully complete a protocol session by randomly
guessing the correct bit responses to the challenge bits received. A
dishonest prover may also use guessing to try to appear closer than
he actually is. He does so by guessing challenge bits and sending
response bits ahead of time, before receiving the challenge bits.
This affects the measured time difference, and hence the relative
distance calculated by the verifier. Furthermore, as he knows the
2n bit sequence used in the protocol session, the dishonest prover
may perform educated guessing: before receiving a challenge bitCi ,
he may randomly choose between potential response bits R0i and
R1i . Moreover, in the case when R0i = R1i , the correct response is a
priori known to the prover.

While guessing ahead, the prover needs to maintain synchrony
with the verifier’s pace of sending out challenges to minimize the
chances of being detected. This is important since an unsolicited
response is a witness for a guessing-ahead attempt and is used
by the verifier to immediately abort the protocol session. To syn-
chronize with the verifier, the prover carefully times a premature
response ri+1 (for round i + 1) in relation to the challenge ci of the
preceding round i . Therefore, in an n-round protocol run, the last
n − 1 responses can all be sent out prematurely. The first-round
response is not guessed ahead as the prover uses the first challenge
to initiate the attack. The diagram in Figure 1 illustrates a possible
sequence of challenge-response exchanges with guessing ahead.

Verifier Prover

c1

r1

c2 r2

c3

r3

c4 r4

send c1

recv c1
send r1

recv r1

send c2

recv c2

send r2

recv r2

send c3

recv c3
send r3

recv r3

send c4

recv c4

send r4

recv r4

Figure 1: A challenge-response sequence involving a

guessing-ahead prover. The dashed horizontal lines mark

the verifier’s discrete clock cycle boundaries, and the verti-

cal bars on the left highlight the measured time-of-flight.

Figure 2: Attack in-between-ticks

In-between-ticks Attack. Another type of attack that exploits
the distance measurement phase of a DB protocol is the in-between-
ticks (IBT) attack identified in [19]. It can appear even when the
prover is honest and adversary is not present. It does not involve
guessing of the response bits and does not rely on the design details
of a specific distance bounding protocol. This attack is a conse-
quence of the foundational difference between real-time in the
physical world and time management by discrete time processors
that are used as verifiers. Namely, such a discrete time verifier per-
forms instructions and measures time following his clock cycle rate
and performance limitations. Assuming that an instruction can be
executed in one clock cycle, after sending a challenge message at
some moment, the verifier can record this sending time only at a
later moment, in another clock cycle. Similarly, when receiving a
response message, the verifier records its arrival at a later moment.
This can result in discrepancy between the actual and the observ-
able time intervals, i.e., between actual time when the bits are sent
and received, on one hand, and the recorded time of sending and
receiving bits, on the other, as shown in Figure 2. Consequently,

the verifier can make the erroneous decision to grant access to a
prover that is outside the specified perimeter. This error can easily
amount to several meters when using radio-frequency and standard
devices with not very powerful processors. Moreover, it has also
been shown in [19] that the probability of such false acceptance
is rather high (up to 50%) when the prover is close to the bound.
For more details on this type of attack, including its probability
analysis, see [18, 19].

3 RELATEDWORK

The approach followed in this work, which is based on Rewrit-
ing Logic and Maude, has been used before to formally verify
quantitative properties of probabilistic systems, including analysis
of resilience against DoS attacks [2, 5], analysis and redesign of
wireless sensor networks [20], evaluation of design alternatives of
distributed transaction systems [23], among several others. In [15],
SeVen, a selective strategy for low-Rate application level DDoS at-
tacks is formalized in Maude and formally analyzed for a range of
parameters to gain insight into the potential effectiveness of SeVen.

Probabilistic reasoning in the analysis of cryptographic protocols
in general has been supported by tools such as e.g. EasyCrypt [16].

A formal model of physical security protocols that extends the
Dolev-Yao model with dense time, network topology, and node loca-
tion is presented in [8, 29]. The model is formalized in Isabelle/HOL
and used to verify distance bounding protocols where the concrete
message theory includes exclusive-or. In [9] the model is used for
additional protocols including formally analyzing ranging, distance
bounding, and secure time synchronization.

In [27], a probabilistic model of guessing, needed to analyze
protocols that mix weak cryptography with physical properties
of nonstandard communication channels refines the Dolev-Yao
algebraic method for protocol analysis. Themodel is used to develop
a precise security proof for HK protocol

Attacks that can be found by models of cyber-physical security
protocols using dense time, but not when using discrete time are
presented in [19]. This is illustrated with the IBT attack, which can
be carried out on most DB protocols. A probabilistic analysis of the
attack is also presented.

A unified framework is introduced in [6] that aims to improve
analysis and design of DB protocols. The framework characterizes
different attacks, adversary/prover capabilities and strategies. It
introduces notions of black-box and white-box models, and the
relation between the different attacks with respect to these models.
The framework is demonstrated with a detailed analysis of the
Munilla-Peinado DB protocol. The framework is not formalized
and analysis is carried out by hand.

An exhaustive classification for attacks on DB protocols is de-
fined in [14] that includes a new attack called Distance Hijacking
Attack. Countermeasures for several attacks are proposed. The for-
mal framework of [8, 29] is extended to support reasoning about
overshadowing attacks and the resulting framework is used to
prove the absence of attacks after the proposed countermeasures
are applied. However, all considered attacks are caused by failures
in the authentication phase of DB protocols, not by failures of the
distance measurement phase of DB protocols that we consider in
our analysis here.

4 A REWRITING MODEL OFHK

We use Rewriting Logic [24], and its probabilistic extensions [3,
22], to build a generic and executable model of HK protocols.
The model captures at a high level of abstraction the essential
structural and behavioral aspects of aHK protocol. Furthermore,
usingMaude [13], a high-performance Rewriting Logic engine, the
model can be simulated to generate random sample executions that
can be used to statistically model-check probabilistic properties of
the protocol, including resilience against distance fraud attacks. In
this section, we quickly review Rewriting Logic and Maude and
then give a general description of the model and its behaviors.

4.1 Rewrite Theories andMaude

A rewrite theory R formally describes a concurrent system including
its static structure and dynamic behavior. It is a tuple (Σ, E ∪A,R)
consisting of: (1) a membership equational logic (MEL) [25] signa-
ture Σ that declares the kinds, sorts and operators to be used in the
specification; (2) a set E of Σ-sentences, which are universally quan-
tified Horn clauses with atoms that are either equations (t = t ′) or
memberships (t : s) (where t and t ′ are terms and s is a sort); (3)
a set A of equational axioms, such as commutativity, associativity
and/or identity axioms; and (4) a set R of rewrite rules t −→ t ′ if C
specifying the computational behavior of the system. (See [12] for
a detailed account of generalized rewrite theories).

Probabilistic rewrite theories extend regular rewrite theories with
probabilistic rules [3, 22]. A probabilistic rule

t −→ t ′ if C with probability π

specifies a transition that can be taken with a probability that may
depend on a probability distribution function π parametrized by
a t-matching substitution satisfying the condition C . Probabilistic
rewrite theories unify many different probabilistic models and can
express systems involving both probabilistic and nondeterministic
features. A more detailed account of probabilistic rewrite theories
can be found in [22, 30].

Probabilistic rewrite theories, specified as system modules in
Maude [13], can be simulated by sampling from probability distri-
butions. Using PVeStA [4], randomized simulations generated in
this fashion can be used to statistically model check quantitative
properties of the system. These properties are specified in a rich,
quantitative temporal logic,QuaTEx [3], in which real-valued state
and path functions are used instead of boolean state and path predi-
cates to quantitatively specify properties about probabilistic models.
QuaTEx supports parameterized recursive function declarations,
a standard conditional construct, and a next modal operator ⃝,
allowing for an expressive language for real-valued temporal prop-
erties (Example QuaTEx expressions appear in Section 5). Given a
QuaTEx path expression and a Maude module specifying a proba-
bilistic rewrite theory, statistical quantitative analysis is performed
by estimating the expected value of the path expression against
computation paths obtained by Monte Carlo simulations. More
details can be found in [3].

4.2 An Overview of theHK Model

We introduce a model of HK as a probabilistic rewrite theory
RHK = (ΣHK , EHK ∪ AHK ,RHK). The full specification of

the model in Maude is available online at https://bitbucket.org/
malturki/dbp2/. Since our aim is to be able to formally model and an-
alyze distance fraud attacks, for which the rapid bit exchange phase
is the most relevant phase of a DB protocol, the other two phases
(the setup and verification phases) are only abstractly specified.
This keeps the model generic, enabling reasoning about distance
fraud attacks in differentHK protocols. Furthermore, the model
is heavily parametrized to capture different attack behaviors and
countermeasures, further adding to its generic design. Moreover, by
utilizing different facilities provided by its underlying formalism,
the model is both probabilistic, specifying randomized behaviors
and environment uncertainties, and real-time, capturing time clocks
and message transmission delays.

The structure of the model, specified by the MEL sub-theory
(ΣHK , EHK ∪ AHK), is based on a representation of actors in
Rewriting Logic, which builds on its object-basedmodeling facilities.
In this model, the state of the protocol is a configuration consisting
of a multiset of actor objects and messages. Objects communicate
asynchronously by message passing. There are two fundamental
objects in the model: the verifier object and the prover object.

The verifier object maintains in its state a status attribute indi-
cating its current execution step in the protocol, and whether the
current protocol run has successfully or abnormally terminated.
Furthermore, the verifier maintains a lists attribute containing
the bit strings that are generated during the setup phase and used
during the rapid bit exchange phase. In addition, the values of both
the selected challenge bit and the received response bit for the cur-
rent round are recorded by the verifier. Moreover, to measure the
time needed for a challenge-response round to complete, the veri-
fier has to record the measured time value for when the challenge
was sent and the measured time value for when the corresponding
response was received. The difference between these two values
gives the measured round-trip time, and hence the measured dis-
tance. Furthermore, to enable modeling absence of IBT attacks, we
also include two attributes for recording the actual time values
for sending a challenge and receiving the corresponding response.
The difference gives the actual round-trip time. While the mea-
sured time is what a realistic verifier having limited processing
capabilities would compute, the actual time is computable by an
abstract verifier with an extremely powerful and precise processor
that is not vulnerable to the IBT attack (see [18]). Finally, the verifier
keeps track of: (1) the number of rounds the response’s measured
round-trip time was within the bound, (2) the number of rounds
the response’s actual round-trip time was within the bound, and
(3) the number of rounds the response bit was correct. The desired
acceptance criteria can later be defined as a function of one or more
of these counters (see Section 5).

The prover object is a simpler object maintaining a status at-
tribute, a lists attribute, and an internal counter for counting
incoming challenges.

The model uses dense time (represented by real numbers) to
model physical timing of events. Moreover, the (implicit) discrete
clock of the verifier object is assumed to always be in sync with the
dense physical time of the configuration. In other words, assuming
that both physical time and the verifier’s clock begin at 0, discrete
clock ticks will occur exactly at the positive-integer-valued instants
of time.

4.3 HK Model Parameters

The model is designed to be parametric in a number of variables
that can be adjusted as needed for the analysis task at hand. The
parameters are specified as operators in ΣHK and instantiated
using equations in EHK .

Protocol parameters. Security parameters of the protocol in-
clude the number of rounds of rapid-bit exchange, ROUNDS, and
the protocol’s distance upper bound (measured in time delay), given
by MAXRTT. Furthermore, BBASE and DEPTH define, respectively,
the number of possible unique bit values and the number of re-
sponse bit strings to be generated by the protocol’s hash function.
These two parameters enable modeling generalized versions of
the HK protocol with k-valued challenges and responses acrossm
strings, with k,m ≥ 2. Finally, noise levels in the communication
medium are captured by the noise bias parameter, NOISE ∈ [0, 1],
which is the probability of a bit being destroyed while in transit
due to noise. Note that, unlike HK [17], where noise is assumed
to simply flip bits (which is rather unrealistic), we model noise as
(random) disturbance from which the original signal (bit) cannot
be recovered.

Threat model. Three parameters capture time delays pertain-
ing to actions made by the verifier: X, the time delay to send out
a challenge, and Y and Z, the time delays to record timestamps
of a challenge sent and a response received, respectively. The IBT
vulnerability can be enabled by setting the Boolean flag IBT? (for a
realistic verifier) or disabled by resetting it to false (for an abstract
verifier with access to physical timestamps). Furthermore, the be-
havior of the prover is defined by the parameter PTYPE, which can
take one of three values: 0 for a legitimate prover (no guessing), 1
for a dishonest prover that has access to the protocol session’s bit
strings (educated guessing), and 2 for an attacker that may not have
access to the protocol session’s bit strings (random guessing). In the
cases of a dishonest prover (when PTYPE > 0), whether the prover
is able to mount a guess-ahead attack is determined by the Boolean
flag GAHEAD?, and in this case, the parameter GATD specifies how
much in advance the attacker/dishonest prover is sending out his
premature responses to the verifier. Finally, an upper bound on the
(actual) distance between the verifier and the prover is determined
by the sumMAXRTT+H, whereH is the distance differential, which
can in principle have a value in the range (−MAXRTT,∞). While
an attacker will have a positive value for H (representing being
outside the verifier’s bound), a legitimate prover is modeled by
having H ≤ 0.

Acceptance threshold. Three parameters define acceptance
threshold levels for a run of the protocol, one for each acceptance
criterion. The parameters are: (1)MIN-MTR, the minimum number
of successful rounds based on the measured round-trip time, (2)
MIN-ATR, based on the actual round-trip time, and (3)MIN-MBR,
based on the correctness of the response bits. Values may range
from 0 up to ROUNDS (which represents the most restrictive ac-
ceptance condition requiring all rounds to be successful). Of course,
simple majority and large majority can be defined as functions on
ROUNDS, and final acceptance can be based on a combination of
these parameters (e.g., a large majority for MIN-MTR and a simple
majority for MIN-MBR).

https://bitbucket.org/malturki/dbp2/
https://bitbucket.org/malturki/dbp2/

We note that using these parameters, different models can be ob-
tained as special instances. For example, the simple model of theHK
protocol is obtained by assuming binary bits with two bit sequences
(BBASE = DEPTH = 2), absence of the IBT vulnerability (IBT? =
false), an attacker guessing based on the shared bit sequences
(PTYPE = 1), no guess-ahead attacks (GAHEAD? = false), a posi-
tive number of rounds (ROUNDS > 1), acceptance based on both
response correctness and measured distance (with MIN-MBR =
MIN-MTR = ROUNDS), and, finally, no noise (NOISE = 0).

4.4 HK Model Transitions

The behaviors of the verifier and the prover in the protocol are
specified by, possibly conditional and probabilistic, rewrite rules
Rdb in Rdb. There are ten, semantically rich rewrite rules in Rdb
in total (of which six rules are probabilistic). To save space and
avoid presentation clutter, we describe the main events associated
with the rewrite rules specifying the model’s bit exchange behavior
instead of including the rules verbatim from the specification. As
mentioned above, more details can be found at https://bitbucket.
org/malturki/dbp2/.

Initiating a round. The beginning of a round is triggered by
the verifier object receiving a self-addressed beginRound message
while in the ready state (self-addressed messages are commonly
used in actor-based systems to schedule internal events [1]). When
starting a round, the verifier prepares itself by resetting any stored
time value from the previous round and randomly selecting the
challenge bit to be used for this round from the set {0, ...,BBASE−1}.
Furthermore, the verifier goes into a sending state and schedules
a self-addressed sendChallenge message to send out the selected
challenge.

Sending a challenge.When it is time to send out the challenge,
the verifier schedules two messages: (1) a self-addressed message
recordTime scheduled to be delivered at the next discrete clock tick
for the verifier to timestamp the sending of the challenge, and (2) a
challenge message having the challenge bit previously selected
by the verifier, addressed to the prover and scheduled for delivery
with a delay equal to the sum of X (the verifier’s internal delay) and
the transmission delay (computed as half the sumMAXRTT + H).
Furthermore, the actual time for sending the challenge is recorded.
Finally, the verifier changes its status to sent.

Recording the timestamp. When the message recordTime
arrives, the verifier records the timestamp t + Y, where t is the
current time value, and Y is the random variable associated with
recording a timestamp for sending the challenge. The verifier goes
into a receiving state and no new messages are scheduled.

Responding to a challenge. Upon receiving a challenge from
the verifier, the prover reacts based on its type and the current state
of the bit exchange phase. If the protocol run consists of only one
round of bit exchange (ROUNDS is 1) or the prover is not attempting
to guess-ahead responses (GAHEAD? is false), the prover simply
schedules a ‘standard’ response to the challenge received to be
delivered after a delay given by the one-way transmission delay
d . Otherwise, if the bit exchange is multi-round and the prover is
guessing ahead, there are three distinguishable cases:

(1) The current round is the first: the prover schedules two
responses: (1) a standard response to the challenge received

delayed by d , and (2) a guess-ahead response in anticipation
of the next challenge (the second challenge) delayed by 3d −

GATD, which is the amount of time the prover anticipates the
verifier to expect the next response, minus the guess-ahead
time differential GATD.

(2) The current round is neither the first nor the last: the prover
does not respond to the received challenge (as it had already
responded with a guess in the previous round). Instead, the
prover schedules only a guess-ahead response for the next
challenge.

(3) The current round is the last: the prover does not schedule
any response, since all the responses needed have already
been scheduled before.

The payload of the response message is equationally computed
and may depend on the value of the challenge bit received, the
current-round and/or next-round tuples of bits in the shared bit
strings, the type of the prover PTYPE, and the noise level NOISE.
In any case, if noise succeeds, the response is simply turned into
an illegible signal.

Receiving the response.When the prover’s response message
arrives, and the verifier is in the receiving state (implying that
the verifier is expecting a response), the verifier records the actual
time the response was received, records the response bit, changes
its status to received, and schedules a self-addressed message to
be delivered by the next discrete clock tick with a time delay given
by Z (the random delay associated with recording the timestamp
of the response). If the prover’s response message arrives while the
verifier is not expecting a response (indicated by a status field value
different from receiving), which can only happen if the prover
is mounting a guess-ahead attack, the verifier detects the attack
and immediately aborts the protocol session (the status is set to
aborted).

Recording the timestamp. In this last step of a bit-exchange
round, the verifier records its measured timestamp of receiving
the response, appropriately updates its counters keeping track of
successful rounds, and goes into the ready state in preparation for
the next round (if any).

5 MODEL CHECKING DISTANCE FRAUD

Two fundamental security properties of a DB protocol are false
acceptance and false rejection probabilities. False acceptance (FA)
occurs when an honest or a dishonest prover outside the allowed
perimeter or an attacker is granted access to the protected resource
by the (honest) verifier, signaling a successful attack. False rejec-
tion (FR), on the other hand, happens when an honest prover is
unrightfully denied access to the resource by the (honest) verifier,
despite being close enough to the verifier.

To formally analyze FA and FR using the rewriting model of
RHK , we first express acceptance and rejection in a DB protocol
as temporal formulas in QuaTEx. The acceptance formula has the
following form:

accepted(t) = if time() > t then hasSatisfiedThreshold()

else ⃝ accepted(t) fi ;
eval E[accepted(t0)]

https://bitbucket.org/malturki/dbp2/
https://bitbucket.org/malturki/dbp2/

The parameter t is the time limit beyond which protocol execution
is halted. In RHK , the limit (given by the actual parameter t0) is
set so that the DB protocol is guaranteed to execute all the way to
completion (or until the verifier aborts execution). accepted(t) is a
recursively defined path expression that uses two state functions:
(1) time(), which evaluates to the time value of the current state of
the protocol, and (2) hasSatisfiedThreshold(), which evaluates to 1.0
if the current state of the verifier object indicates that the minimum
acceptance threshold has been met, and 0.0 otherwise. Therefore,
given an execution path, the path expression accepted(t) evaluates
to hasSatisfiedThreshold() in the current state if the protocol run
is complete; otherwise, it returns the result of evaluating itself in
the next state, denoted by the next-state temporal operator ⃝. The
probability of acceptance can be approximated by estimating the
expected value of the formula over random runs of the protocol,
denoted by the query eval E[accepted(t0)]. Different acceptance cri-
teria, e.g. measured-time acceptance and bit-correctness acceptance,
give rise to different versions of the formula accepted(t).

The rejection formula rejected(t) is the dual of the acceptance
formula and its definition is similar. A statistical approximation
of the rejection probability is similarly computed using the query
eval E[rejected(t0)].

A third security property, which is relevant only in the presence
of a guessing-ahead attacker, is the attack detection (AD) rate, which
is the probability that the verifier receives an unsolicited response.
This property is similarly specified as aQuaTEx formula.

We have used our model given by RHK to statistically model
check FA and FR formulas (and AD when applicable) under various
settings using the statistical model checking tool PVeStA. In par-
ticular, in the following sections we analyze: (i) Guessing attacks
(Section 6), including simple guessing and guessing-ahead attacks,
and (ii) the IBT vulnerability (Section 7), including IBT-only attacks
and guessing ahead while exploiting IBT. Throughout the analysis,
we assume a 99% confidence interval with size at most 0.02. We
also fixMAXRTT in RHK to 4.0 time units (similar to [18, 19]) and
assume a uniform distribution for the verifier’s delays X, Y and Z.

6 GUESSING ATTACKS

HK protocols are particularly vulnerable to guessing attacks, since
the event space determined by the possible bit values is usually
small (typically only binary bits are used) and the bit-exchange
rounds – in many cases – are probabilistically independent. In our
analysis, we consider the two possible guessing behaviors: simple
guessing and guessing ahead, defined by whether the response is
sent out after or before a challenge is received.

6.1 Simple Guessing Attacks

Simple guessing targets acceptance based on correctness of re-
sponses. Resilience to simple guessing attacks is a good basic mea-
sure of a protocol’s resilience to more sophisticated attacks. As
mentioned before, there are two possible guessing strategies: edu-
cated guessing (denoted by GS1), that requires access to protocol
session’s bit strings, and random guessing (denoted by GS2). In GS1,
the probability of FA in a single round is 0.75 [17], while for GS2,
the probability is only 0.5, which is the optimal FA probability of
a DB protocol. To reduce the probability of FA, the bit-exchange

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

GS1
GS2

(a) FA probability with guessing

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

No Noise
Low (5%)
Moderate (25%)
High (50%)

(b) FR probability due to noise

Figure 3: False Acceptance (FA) and False Rejection (FR)

probabilities based on bit correctness in multiple rounds

phase is normally run in n > 1 rounds, so that for GS1 and GS2,
the probabilities are reduced to 0.75n and 0.5n , respectively. These
results are easily confirmed by our model for single-round and
multi-round runs of the protocol, as the plot in Figure 3(a) shows.

In the presence of noise, to which ultra-wide band communi-
cation channels commonly targeted for DB applications are very
susceptible, a legitimate prover may be denied access causing FR.
To investigate the effects of noise, we estimate the probability of
FR assuming three levels of noise: low (a 5% chance of a bit being
destroyed due to noise), moderate (25%) and high (50%). Figure 3(b)
plots the estimated probabilities against the number of rounds used.
As noise levels increase, the probability of FR increases significantly,
especially for larger numbers of rounds. Figure 3 demonstrates that
reducing FA and FR are two conflicting requirements when deciding
the number of rounds to be used with noisy channels.

One way to reduce such large FR rates is to loosen the acceptance
condition so that a prover is accepted whenever he succeeds in at
least k < n rounds (set by the parameter MIN-MBR), where n is
the number of rounds. We investigate two acceptance thresholds:

the simple majority (SM), where 2k ≥ n, and large majority (LM),
where 3k ≥ 2n. Figure 4(a) plots FA probabilities assuming a GS1
attacker, while Figure 4(b) plots FR probabilities assuming an honest
prover, all at low (5%) and high (50%) noise levels (the zero-noise
cases in Figure 4(a) are shown for comparison only).

We first point out the wavy lines, which are characteristic of SM
and LM data points and show up in all charts involving SM and
LM measurements. This phenomenon is due to the fact that the
minimum threshold values for SM and LM acceptance may repre-
sent percentages higher than 50% and 67%, respectively, of the total
number of rounds, affecting FA and FR. For example, in SM, when
ROUNDS is 5, the minimum threshold is 3 rounds, representing a
60% acceptance requirement and resulting in a lower FA rate. As the
number of rounds increases, however, this phenomenon diminishes
as the computed thresholds converge to their target percentages.

More importantly, we observe from Figure 4(a) that noise does
not help simple guessing attacks. In fact, the higher the noise, the
less effective the attacks are. Indeed, for an attack round to be
successful, the prover must make the correct guess and noise will
have to fail. The effect of noise is especially prominent when noise is
high for large values of ROUNDS, where FA is almost zero for both
SM and LM. We also note that for low noise at 5% (and similarly
at 0%), FA probabilities are quite high, in the range 0.55 − 1.0.
Although this may seem counter-intuitive at first thought, it should
be expected since the acceptance requirements of SM and LM (50%
and 67%, respectively) are lower than the success probability of a
GS1 prover, which is 75%. Nevertheless, LM performs consistently
better than SM in reducing FA across all noise levels. Unfortunately,
this comes at the price of increased probability of denying access to
legitimate users, as can be seen by comparing the plots in Figure 4a
and 4b. SM, however, seems to provide the best compromise for
very high levels of noise.

6.2 Multi-valued Challenges and Responses

In addition to the number of rounds, two more security parameters
can be adjusted to reduce FA. Although they have been classically
fixed at 2, the number of distinct challenge bit values, and hence the
number of bit strings generated by the shared hash function, and
the number of distinct response bit values, can each be increased
beyond 2. k-valued challenges andm-valued responses, with k,m >
2, were explicitly considered in the SKI protocol scheme of [10].
Higher values of k and m can significantly strengthen an HK

against FA. More sophisticated hardware components and signaling
techniques that are needed to cope with the increased complexity
exist and can be employed for realizations of such designs.

Our model captures multi-valued challenges and responses using
the parameters DEPTH and BBASE, respectively. Figure 5 plots FA
against the number of rounds for different DEPTHxBBASE pair
values. Clearly, FA probability drops rapidly as the DEPTH and
BBASE values are increased. In particular, 4-valued bits already
surpass the optimal performance of a standard DB protocol even
with a GS1 prover with access to the shared strings. Using different
methodology, we, therefore, present an additional argument in
favour of multi-valued bit approach considered in [10].

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

SM - 0%
LM - 0%
SM - 5%
LM - 5%
SM - 50%
LM - 50%

(a) FA probability (assuming GS1)

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

SM - 5%
LM - 5%
SM - 50%
LM - 50%

(b) FR probability

Figure 4: False Acceptance (FA) and False Rejection (FR)

probabilities for simple majority (SM) and large majority

(LM) for bit correctness

A variation of HK1 aimed at reducing FA to an optimal 0.5n is
based on the use of fully complementary sequences of bits, so that
each pair of strings has the maximum Hamming distance, equal to
the number of rounds. Obviously, such complementary sequences
require that BBASE ≥ DEPTH. Using the idea of the complement,
as the analysis in Figure 5 shows, educated guessing becomes only
as effective as random guessing, as expected. It is important to note,
however, that these results hold for distance fraud only, which is the
focus of our analysis. Other types of fraud, involving a third-party
intruder (different from the prover), may actually benefit from this
setup and increase FA. Namely, the exchanged bits may enable the
external attacker to gain some knowledge about the structure of
the bit strings that he can then exploit (The worst case occurs when
binary bits are used, since the attacker can fully construct the two
strings by observing the bit exchange between the unsuspecting
verifier and prover).

1Suggested by Joshua D. Guttman through personal communication during the Proto-
col eXchange meeting on December 12, 2017

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

2x2
4x4
8x8
2x2 comp.
4x4 comp.
8x8 comp.

Figure 5: False Acceptance (FA) probability with multi-

valued bits and multiple strings (for bit correctness in all

rounds)

6.3 Guessing-ahead Attacks

Guessing-ahead attacks target acceptance based on both correctness
of the response bits and the calculated time bounds. Consequently,
they represent more complicated scenarios than the ones explored
earlier in this section.

In the simplistic, and rather unrealistic, case that a verifier’s
processing delay between receiving a response and sending out
the next-round challenge is fixed, say d , a guessing-ahead prover
can simply add this delay d to his guess-ahead window to ensure
that the attack goes undetected. Even if d is initially unknown, the
attacker may use the first two rounds to learn d and then take it into
account in subsequent rounds, since it is fixed. However, in reality,
d is not fixed as it depends on the verifier’s state when the response
is received along with the (unpredictable) verifier’s hardware delays
associated with time-stamping and sending messages. Variability
of d is captured to some extent in our rewriting model by having
the verifier’s actions governed by a discrete clock and by modeling
the (bounded) random time delay X for sending out challenges. In
general, randomizing d across rounds can potentially serve as a
countermeasure for guess-ahead attacks [11]. It would therefore
be of interest to analyze guessing-ahead attacks in the presence of
such randomized verifier behavior.

While the distance bound for a DB protocol is usually public
knowledge (given as part of the specification of the protocol), the
exact location of the verifier may not necessarily be known to
the prover. This means that a prover attempting a guess-ahead
attack may not know exactly what his distance h from the bound
is, although he may still be aware of the verifier’s approximate
location. Therefore, we define the following guess-ahead strategies:

(1) The prescient strategy (PRh), which represents a prover who
knows the verifier’s exact location (and hence h) and, there-
fore, responds exactly 2h time units sooner than the antic-
ipated time of receiving the challenge. It models a strong
attacker and serves as a benchmark for the other attack
strategies’ performance.

Attack Strategy Aim/Assumptions Guess-ahead

Prescient PRh Verifier’s location is
known exactly

Exactly 2h†

Conservative CNh Avoid detection with
uncertainty in verifier’s
exact location

Chosen uniformly at
random from [h, 2h]

CN Avoid detection with no
knowledge of verifier’s
location

Chosen uniformly
at random from
[T /4,T /2]‡

Aggressive AGh Meet the time bound
with uncertainty in ver-
ifier’s exact location

Chosen uniformly
at random from
[3h/2, 5h/2]

AG Meet the time bound
with no knowledge of
verifier’s location

Chosen uniformly at
random from [T /2,T]

† h is the prover’s distance from the bound.
‡T is the verifier’s clock cycle period.

Table 1: A taxonomy of guessing-ahead strategies

(2) The conservative strategy (CNh), representing a prover who
is uncertain about the exact location of the verifier and who
aims to minimize the probability of the attack being detected.
In this strategy, the guess-ahead time is chosen uniformly
at random from [h, 2h]. A variation of this strategy, denoted
CN, draws its guess-ahead time from the window [T /4,T /2],
where T is the verifier’s clock cycle period. CN can be used
if the uncertainty about the verifiers’ location, i.e., h, is very
high, and yet the prover is conservative in timing the attack.

(3) The aggressive strategy (AGh), uses more aggressive guess-
ahead timing (chosen uniformly from [3h/2, 5h/2]), hoping
to increase his chances of meeting the time bound require-
ment while risking being detected. As above, the variant
AG, in which the guess-ahead time is drawn from [T /2,T],
models an aggressive strategy with unknown h.

Table 1 summarizes this taxonomy of strategies, which are the
ones we consider in our analysis. We show below the results of the
most interesting cases, where we have a capable attacker (GS1) who
is fairly close to the distance bound (0 < h ≤ 0.5) and a somewhat
cautious verifier using the large majority for both bit correctness
and time tests with a typical level of noise (5%). Other possibilities
can also be analyzed but they are not expected to yield new or
interesting results.

Figure 6(a) plots the probability of a successful attack using these
attack strategies for different rounds. We first observe that knowing
something about h can significantly increase an attacker’s chances
of success. The prescient strategy PRh can achieve success proba-
bilities ranging from 40% to 60%, even at high round counts (and in
the presence of noise!). Even if the exact value of h is unknown, the
strategy AGh can achieve 30% to 40% success, which is still quite
high, and it outperforms the conservative strategy CNh . However,
knowing very little about the location of the verifier severely limits
the effectiveness of the attack (CN and AG). Furthermore, in this
case, following an aggressive strategy (AG) is counter-productive.

There are four ways in which a guessing-ahead round may fail:
(1) the response bit is incorrect, (2) the response arrives too late, (3)
the response gets destroyed by noise, or (4) the response arrives too

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

PRh
CNh
CN
AGh
AG

(a) FA probability

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

PRh
CNh
CN
AGh
AG

(b) AD probability

Figure 6: False Acceptance (FA) and Attack Detection (AD)

probabilities with guessing-ahead (GS1), low noise and large

majority (LM) for both bit correctness and time tests

early (the attack is detected). We have looked into the first three
already. It would therefore be insightful to investigate round failures
due to the attack being detected by the verifier, i.e., to analyze AD
probabilities. Figure 6(b) plots the AD probability for the different
attack strategies. While PRh and CNh are never detected by the
verifier, the AD rates for the other strategies increase with the
number of rounds, with the blindly aggressive strategy AG being
the worst performer. AGh , however, maintains a detection rate that
is comparable to the much more conservative strategy CN, despite
being much more effective than CN (as Figure 6(a) shows). By
knowing approximately where the verifier is located, an aggressive
guessing-ahead strategy can be quite effective.

7 THE IBT VULNERABILITY

In this section, we analyze configurations with an “actual” verifier,
which suffers inherent limitations in timely processing instructions
against its discrete clock and which does not have access to the
physical timestamps of messages sent or received [19]. The IBT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

h

Pr
ob
ab
ili
ty

Fixed h

Theorem bound

Figure 7: False Acceptance (FA) probability in the (single-

round) DB protocol for different values of h (prover’s dis-

tance from the bound)

vulnerability is enabled in the model by setting the flag IBT? to true.
We note, as mentioned before, that this vulnerability can appear
with an honest prover and in the absence of an adversary.

7.1 IBT Attacks

Through the IBT vulnerability, an attacker targets acceptance based
on the round-trip time measured by the verifier. To increase his
chances of acceptance, the attacker needs to be close enough (but
not necessarily too close) to the upper bound stipulated by the
protocol (MAXRTT in the model).

We confirm FA probabilities shown in Theorem 4.3 of [19]. The
theorem states that the attacker only needs to be within half-a-clock
tick from the bound (so 0 < h ≤ 0.5) to succeed with probability
0.5. Moreover, as the attacker moves away from the bound with
0.5 < h < 1, the probability of mounting an attack linearly de-
creases as h increases until it becomes zero for h ≥ 1. Figure 7
plots FA based on the round-trip time measured by the verifier
against the bounds given by Theorem 4.3 of [19], using different
values of h ranging from 0 to 1. As the chart shows, the estimated
probabilities match very closely those given by the theorem. It is
worth noting that the analytical models and machinery used for
proving this theorem in [19] are non-trivial and achieving such
precise estimations mechanically from our model highlights the
effectiveness of the model.

Next, we investigate repeating the bit-exchange round as an
IBT attack mitigation measure. The simple majority (SM) and large
majority (LM) acceptance thresholds are defined as above. In [18],
it was shown that SM has no positive or negative effect on FA when
0 < h ≤ 0.5 but can be effective for 0.5 < h < 1.0, especially as
the number of rounds n increases (Theorem IV.7 in [18]). On the
other hand, LM decreases FA significantly as the number of rounds
n increases for any positive h (Theorem IV.8 in [18]). These results
are confirmed by our model while gaining a deeper understanding
of how these different thresholds compare. Figure 8(a) plots the
probability of FA using both acceptance thresholds when the proto-
col is run for different values of n. For comparison, we also include

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Rounds

Pr
ob
ab
ili
ty

SM
LM
All

(a) FA probability with 0 < h ≤ 0.5

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Rounds

Pr
ob
ab
ili
ty

SM
LM
All

(b) FR probability with −0.5 < h ≤ 0

Figure 8: False Acceptance (FA) and False Rejection (FR)

probabilities in the multi-round DB protocol for different

time test acceptance conditions (SM, LM, All) and prover’s

distance from the bound (h)

the most restrictive ‘All’ acceptance threshold requiring all rounds
to pass the bound test successfully. Figure 8(a) shows that, for SM,
FA remains close to its single-round value (0.5) as n increases, while
LM reduces FA considerably. For 0.5 < h < 1.0 (not shown in the
chart), both acceptance thresholds help mitigate the attack, with
LM being more effective at lower values of n (nearly as effective as
the ‘All’ strategy).

Effectiveness against the IBT attack in FA is one important aspect
of a mitigationmeasure. Another equally important aspect is FR.We
investigate the performance of these mitigation strategies using the
same parameter values used in our analysis of FA above, except now
h is negative, representing a legitimate prover within the protocol’s
bound. Figure 8(b) plots FR probabilities for different values of
n when 0 > h ≥ −0.5. As n increases, the rejection rate of ‘All’
increases rapidly all the way to 1.0while that of SM and LM steadily
decreases. Moreover, SM seems to maintain the best FR rates across

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

No. of Rounds

Pr
ob
ab
ili
ty

PRh
CNh
CN
AGh
AG

Figure 9: False Acceptance (FA) probability when guessing-

ahead with IBT for guessing-ahead (GS1), low noise and

large majority (LM) for bit correctness and time tests

allnwith some noticeablemargin. For−0.5 > h > −1.0 (not shown),
FR is not an issue as all strategies had zero FR probabilities.

7.2 Guessing-ahead with IBT

As both guessing ahead and IBT-based attacks attempt to manipu-
late the measured distance computed by the verifier, it would be
insightful to see how the two types of attacks interact. Indeed, guess-
ing ahead against a realistic verifier represents a practical setup
that system designers and practitioners would want to analyze to
assess resilience against such attacks. Therefore, we analyzed the
effectiveness of the guessing ahead strategies described above in
Section 6.3 against an IBT-vulnerable verifier.

Figure 9 plots FA probability assuming a GS1 prover, low noise
and large majority acceptance. By comparing this chart with that
of Figure 6a (an abstract verifier), we observe that the IBT vulnera-
bility contributes slightly to the success of guessing ahead attacks
by about 5–10% across almost all attacker strategies, except CNh ,
which is significantly helped by IBT, to the extent that CNh be-
comes as optimal as PRh . This is significant since it means that, with
IBT, the guessing ahead attack can tolerate a level of uncertainty
in knowing the exact location of the verifier without sacrificing
effectiveness of the attack. For instance, at 10 rounds, CNh achieves
about 50% acceptance with IBT, compared to only 20% without IBT.
Gains due to IBT become even higher for larger numbers of rounds.

As for attack detection, AD probability, however, is not affected
by exploiting IBT and the results obtained are almost identical
to those shown in figure 6b without IBT. This implies that the
increased effectiveness of the attacks is indeed due to the attacker
being able to manipulate the distance measured by the verifier.

8 CONCLUSION

We presented a model based on Rewriting Logic through which
HK protocols can be faithfully specified and analyzed. The model
is characterized by being both expressive and computational, cap-
turing the probabilistic, real-time interactions of these protocols.

Using Maude and PVeStA, probabilistic properties of false accep-
tance, false rejection and attack detection under different settings
and attacker models were mechanically verified through statistical
model checking. Verification confirmed very precisely some known
results (for which complex manual proofs had to be developed) and
enabled the evaluation of new attack strategies in practical settings
(noisy channels and resource-constrained verifiers) that are not
easily manually analyzable.

There are several possible extensions for future research. First,
other scenarios, such as considering probability distributions for
the verifier’s delays X, Y and Z other than the uniform distribution,
can quickly become too complex for manual analysis, but they can
still be formally and automatically verified with our model using
statistical model checking. Moreover, it would be interesting to
model verifiers who are actively trying to counter guessing and IBT
attacks, e.g. randomizing challenge timings or observing noticeable
variations in measured time-of-flight, and investigate different pos-
sible strategies. Another direction for future research is to extend
our model and model to allow investigating other kinds of attacks
on DB protocols that may involve parties other than the verifier
and the prover, such as Mafia and Terrorist fraud attacks. A fourth
direction is to develop suitable probabilistic extensions to timed
multiset rewriting in which DB protocols (and other probabilistic
timed systems) can be specified and probabilistically analyzed.

ACKNOWLEDGMENTS

Alturki is partially supported by KFUPM through his sabbatical
project SL161003. Ban Kirigin is supported in part by the Croatian
Science Foundation under the project UIP-05-2017-9219. Scedrov
is partially supported by ONR. The participation of Kanovich and
Scedrov in the preparation of this article was partially within the
framework of the Basic Research Program at the National Research
University Higher School of Economics (HSE) and partially sup-
ported within the framework of a subsidy by the Russian Academic
Excellence Project ‘5-100’. Talcott is partly supported by ONR grant
N00014-15-1-2202 and NRL grant N0017317-1-G002.

REFERENCES

[1] Gul Agha. 1986. Actors: a model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA, USA.

[2] Gul Agha, Carl A. Gunter, Michael Greenwald, Sanjeev Khanna, José Meseguer,
Koushik Sen, and Prasanna Thati. 2005. Formal Modeling and Analysis of DoS
Using Probabilistic Rewrite Theories. In International Workshop on Foundations
of Computer Security (FCS’05). IEEE, Chicago, IL.

[3] Gul Agha, José Meseguer, and Koushik Sen. 2006. PMaude: Rewrite-based Speci-
fication Language for Probabilistic Object Systems. Electronic Notes in Theoretical
Computer Science 153, 2 (2006), 213–239.

[4] Musab A. Alturki and José Meseguer. 2011. PVeStA: A Parallel Statistical Model
Checking and Quantitative Analysis Tool. In Algebra and Coalgebra in Com-
puter Science, Lecture Notes in Computer Science, Vol. 6859. Springer Berlin /
Heidelberg, 386–392.

[5] Musab A. Alturki, JoséMeseguer, and Carl A. Gunter. 2009. Probabilistic Modeling
and Analysis of DoS Protection for the ASV Protocol. Electron. Notes Theor.
Comput. Sci. 234 (2009), 3–18.

[6] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lauradoux, and
Benjamin Martin. 2011. A Framework for Analyzing RFID Distance Bounding
Protocols. J. Comput. Secur. 19, 2 (April 2011), 289–317. http://dl.acm.org/citation.
cfm?id=1971859.1971864

[7] Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gérault, Pascal Lafourcade,
Cristina Onete, and Jean-Marc Robert. 2017. A Terrorist-fraud Resistant and
Extractor-free Anonymous Distance-bounding Protocol. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security (ASIA
CCS ’17). ACM, New York, NY, USA, 800–814.

[8] David Basin, Srdjan Capkun, Patrick Schaller, and Benedikt Schmidt. 2009. Let’s
Get Physical: Models and Methods for Real-World Security Protocols. In Theo-
rem Proving in Higher Order Logics: 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–22.

[9] D. Basin, S. Capkun, P. Schaller, and B. Schmidt. 2011. Formal Reasoning about
Physical Properties of Security Protocols. ACM Transactions on Information and
System Security 14, 2 (2011).

[10] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. 2013. Secure and
Lightweight Distance-Bounding. In Lightweight Cryptography for Security and
Privacy, Springer Berlin Heidelberg, Berlin, Heidelberg, 97–113.

[11] Stefan Brands and David Chaum. 1994. Distance-Bounding Protocols. InAdvances
in Cryptology — EUROCRYPT ’93: Workshop on the Theory and Application of
Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings, Springer,
Berlin, Heidelberg, 344–359.

[12] Roberto Bruni and José Meseguer. 2006. Semantic foundations for generalized
rewrite theories. Theor. Comput. Sci. 360, 1-3 (2006), 386–414.

[13] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn Talcott. 2007. All About Maude - A High-
Performance Logical Framework. Lecture Notes in Computer Science, Vol. 4350.
Springer-Verlag, Secaucus, NJ, USA.

[14] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun. 2012. Distance Hijacking
Attacks on Distance Bounding Protocols. In 2012 IEEE Symposium on Security
and Privacy. 113–127.

[15] Y. G. Dantas, V. Nigam, and I. E. Fonseca. 2014. A Selective Defense for Application
Layer DDoS Attacks. In 2014 IEEE Joint Intelligence and Security Informatics
Conference. 75–82.

[16] EasyCrypt. (last accessed: 2018-08-15). https://www.easycrypt.info/trac/.
[17] G. P. Hancke and M. G. Kuhn. 2005. An RFID Distance Bounding Protocol.

In First International Conference on Security and Privacy for Emerging Areas in
Communications Networks (SECURECOMM’05). 67–73.

[18] Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, and Carolyn
Talcott. 2016. Can we mitigate the attacks on Distance-Bounding Protocols by
using challenge-response rounds repeatedly?. In Workshop on Foundations of
Computer Security.

[19] Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, and Carolyn
Talcott. 2017. Time, computational complexity, and probability in the analysis of
distance-bounding protocols. Journal of Computer Security 25, 6 (2017), 585–630.

[20] Michael Katelman, José Meseguer, and Jennifer Hou. 2008. Redesign of the
LMST Wireless Sensor Protocol through Formal Modeling and Statistical Model
Checking. In Proc. of FMOODS ’08 (Lecture Notes in Computer Science), Vol. 5051.
Springer, Berlin, Heidelberg, 150–169.

[21] Chong Hee Kim and Gildas Avoine. 2009. RFID Distance Bounding Protocol with
Mixed Challenges to Prevent Relay Attacks. In Cryptology and Network Security:
8th International Conference, CANS 2009, Kanazawa, Japan, December 12-14, 2009.
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 119–133.

[22] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. 2003. A Rewriting
Based Model for Probabilistic Distributed Object Systems.. In Proc. of FMOODS
’03 (Lecture Notes in Computer Science), Vol. 2884. Springer, 32–46.

[23] Si Liu, Peter Csaba Ölveczky, Jatin Ganhotra, Indranil Gupta, and José Meseguer.
2017. Exploring Design Alternatives for RAMP Transactions Through Statistical
Model Checking. In Formal Methods and Software Engineering: 19th International
Conference on Formal Engineering Methods, ICFEM 2017, Xi’an, China, November
13-17, 2017, Proceedings, Springer International Publishing, Cham, 298–314.

[24] José Meseguer. 1992. Conditional rewriting logic as a unified model of concur-
rency. Theor. Comput. Sci. 96, 1 (1992), 73–155.

[25] José Meseguer. 1998. Membership algebra as a logical framework for equational
specification. In Proc. WADT’97 (Lecture Notes in Computer Science), Vol. 1376.
Springer, 18–61.

[26] Jorge Munilla and Alberto Peinado. 2008. Distance bounding protocols for RFID
enhanced by using void-challenges and analysis in noisy channels. Wireless
Communications and Mobile Computing 8, 9 (2008), 1227–1232.

[27] Dusko Pavlovic and Catherine Meadows. 2010. Bayesian Authentication: Quan-
tifying Security of the Hancke-Kuhn Protocol. Electronic Notes in Theoretical
Computer Science 265, Supplement C (2010), 97 – 122. Proceedings of the 26th
Conference on the Mathematical Foundations of Programming Semantics (MFPS
2010).

[28] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In 2017 IEEE Symposium on Security
and Privacy (SP). 195–212.

[29] P. Schaller, B. Schmidt, D. Basin, and S. Capkun. 2009. Modeling and Verifying
Physical Properties of Security Protocols for Wireless Networks. In 2009 22nd
IEEE Computer Security Foundations Symposium. 109–123.

[30] Koushik Sen, Nirman Kumar, Jose Meseguer, and Gul Agha. 2003. Probabilistic
Rewrite Theories: Unifying Models, Logics and Tools. Technical Report UIUCDCS-
R-2003-2347. University of Illinois at Urbana Champaign.

http://dl.acm.org/citation.cfm?id=1971859.1971864
http://dl.acm.org/citation.cfm?id=1971859.1971864
https://www.easycrypt.info/trac/

	Abstract
	1 Introduction
	2 Distance-bounding Protocols
	2.1 The Hancke-Kuhn Protocol
	2.2 Distance Fraud Attacks

	3 Related Work
	4 A Rewriting Model of HK
	4.1 Rewrite Theories and Maude
	4.2 An Overview of the HK Model
	4.3 HK Model Parameters
	4.4 HK Model Transitions

	5 Model Checking Distance Fraud
	6 Guessing Attacks
	6.1 Simple Guessing Attacks
	6.2 Multi-valued Challenges and Responses
	6.3 Guessing-ahead Attacks

	7 The IBT Vulnerability
	7.1 IBT Attacks
	7.2 Guessing-ahead with IBT

	8 Conclusion
	Acknowledgments
	References

