
Prova: Rule-based Java Scripting for Distributed Web
Applications:

A Case Study in Bioinformatics

Alex Kozlenkov2, Rafael Penaloza1, Vivek Nigam1, Loic Royer1, Gihan Dawelbait1,
and Michael Schroeder1

1 Biotec, Dresden University of Technology, Germany, contact: ms@biotec.tu-dresden.de
2 Dept. of Computing, City University, London, UK

Abstract. Prova is a language for rule-based Java scripting to support informa-
tion integration and agent programming on the web. Prova integrates Java with
derivation and reaction rules supporting message exchange with various proto-
cols. Prova supports transparent access to databases, retrieval of URLs, access to
web services, and querying of XML documents. We briefly illustrate Prova and
show how to implement a distributed bioinformatics application, which includes
access to an ontology stored in a database and to XML data for protein structures.
Finally, we compare Prova to other event-condition-action rule systems.

1 Introduction

Prova is a language for rule based Java scripting for information integration, and agent
programming [6, 3]. Prova is suitable for use as a rules-based backbone for distributed
web applications in biomedical data integration. It has been designed to meet the fol-
lowing goals:

– Combine the benefits of declarative and object-oriented programming;
– Combine the syntaxes of Prolog and Java to appeal to programmers in both worlds;
– Expose logic and agent behaviour as rules;
– Access data sources via wrappers written in Java or command-line shells like Perl;
– Make all Java API from available packages directly accessible from rules;
– Run within the Java runtime environment;
– Enable rapid prototyping of applications;
– Offer a rule-based platform for distributed agent programming with common mes-

saging protocols

These design goals are especially important for integration tasks where location and
format transparency are important. The latter means that the language should support
the work with databases, RDF, HTML, XML, and flat file formats and computational
resources alike. Prova’s rule-based approach is particularly important for two applica-
tions: derivation rules to reason over ontologies and reaction rules to specify reactive
behaviour of possibly distributed agents.

Let us consider examples to illustrate these two types of rules. As a declarative
language with derivation rules Prova follows a Prolog-style syntax as the next example
shows:

Example 1.(Declarative programming)
Graph traversal is a typical examples for declarative programming. A standard example
is the same generation problem, in which all nodes in a tree are returned, which belong
to the same generation. Two nodes are in the same generation if they are siblings or
if their parents are in the same generation. The corresponding Prova programme is
identical to standard Prolog.

Listing 1.1. Prova example
1 parent(anna, gerda).
2 parent(anna, fritz).
3 parent(asif, anna).
4 parent(asif, yanju).
5 parent(yanju, anja).
6

7 sg(X,Y) :- parent(Z,X), parent(Z,Y).
8 sg(X,Y) :- parent(Z1,X), parent(Z2,Y), sg(Z1,Z2).

The query:- solve(sg(gerda,X)). will return X=gerda , X=fritz , and
X=anja .

Thus, Prova follows classical Prolog closely by declaratively specifying relation-
ships with facts and rules. Now let us consider two examples, where access to Java
methods is directly integrated into rules.

Example 2.(Object-oriented programming)
The code below represents a rule whose body consists of three Java method calls: the
first to construct a String object, the second to append something to the string, and the
third to print the string to the screen.

Listing 1.2. Prova example
1 hello(Name):-
2 S = java.lang.String("Hello "),
3 S.append(Name),
4 java.lang.System.out.println(S).

2 Prova and Reactivity

Prova’s reaction rules can comprise events, conditions, and actions in any order, as both
events and actions are reaised by built-in predicates for receiving and sending mes-
sages. Both allow for various protocols such as the agent messaging language Jade,
the Java messaging system JMS (java.sun.com/products/jms/ or even Java
events generated by Swing components. Due to the natural integration of Prova with
Java, Prova’s reaction rules offer a syntactically economic and compact way of spec-
ifying agents behaviour while allowing for efficient Java-based extensions to improve
performance of critical operations. JMS in general has the advantage of being a guar-
anteed delivery messaging platform. Intuitively it means that when computerA sends a
message to computerB the latter is not required to be operational. OnceB goes online
the messages will be delivered.

2.1 Main features of Prova’s reaction rules

Prova provides three main constructs for enabling agent communication:

– sendMsg predicates, which can be used as actions anywhere in the body of a deriva-
tion or reaction rule,

– reaction rules, which have a blocking rcvMsg in the head and which fire upon
receipt of a corresponding event, and

– inline reactions, which are encoded by blocking receipt of messages using rcvMsg
or rcvMult anywhere in the body of derivation or reaction rules.

Communiction actions with sendMsg.The sendMsg predicate can be embedded into
the body of an arbitrary derivation or reaction rule. It can fail only if the parameters are
incorrect and the message could not be sent due to various other reasons including the
dropped connection (note that in the JMS case, the message may be sent anyway even
if the network is down).

The format of the predicate is:

sendMsg(Protocol,Agent,Performative,[Predicate|Args]|Context)

or

sendMsg(Protocol,Agent,Performative,Predicate(Args)|Context)

where Protocol can currently be either jade, jms, self, or queue. Jade and JMS use
the corresponding communication protocols, while self and queue send the message to
the agent itself or to another agent running locally in the same process but in another
thread. Agent denotes the target of the message. For the self, jade, and jms methods,
Agent is the name of the target agent. For the queue option, Agent is the object rep-
resenting the message queue of the target agent. For Jade messages, the agent name
takes the form agent@machine while for jms messages the agent locations are read
from configuration files and are not specified in the Agent parameter. Performative cor-
responds to the semantic instruction the broad characterisation of the message. A stan-
dard nomenclature of performatives is FIPA Agents Communication Language ACL
(www.fipa.org).

[Predicate|Args] corresponds to the bracketed form and Predicate(Args) corresponds
to functional form of the message content sent in the message envelope. The first form
can be useful to match any literal including arity-0 predicates (in which case, query()
is the represented as [query]) or arity-1 predicates (in which case, query(arg1) is repre-
sented as [query,arg1]). The problem with the functional form is that it is impossible to
specify a general pattern accommodating predicates of arbitrary arity while the brack-
eted version is compatible with any arity. Context includes an arbitrary length list of
comma-separated parameters that can be used to identify the message or to distinguish
the replies to this particular message from other messages. In particular, it can be useful
to include the protocol as part of context for the recipient of the message to be able to
reply by using the same protocol.

The following code shows a complete rule that sends a code base (a fragment of
Prova code) from an external File to the agent Remote that will then assimilate the rules

being sent. The rules are encapsulated in a serializable Java StringBuffer object and sent
with the literal for the built-in predicate consult. The particular version of consult will
then read on the Remote machine the Prova statements from a StringBuffer (in contrast
to the standard version of consult that reads statements from the specified file provided
as an input string).

Listing 1.3. sendMsg Example
1

2 % Upload a r u l e base read from F i l e to the host a t address Remote
3

4 upload_mobile_code(Remote,File) :-
5 % Opening a f i l e re tu rns an ins tance of java . i o . BufferedReader i n Reader
6 fopen(File,Reader),
7 Writer = java.io.StringWriter(),
8 copy(Reader,Writer),
9 Text = Writer.toString(),

10 % SB w i l l encapsulate the whole content o f F i l e
11 SB = StringBuffer(Text),
12 sendMsg(jade,Remote, eval , consult (SB)).

Reaction rules with rcvMsg.Reaction rules are derivation rules whose head consists of
a rcvMsg predicate, which has the same syntax as the sendMsg predicate:

rcvMsg(Protocol,To,Performative,[Predicate|Args]|Context)

The agent reacts to the message based on its pattern including the protocol, sender,
performative, message content, and context. The following code shows a general pur-
pose but simplified reaction rule for the FIPA queryref performative. The first rule trig-
gers a non-deterministic derivation of the literal [Pred|Args] sent as the message con-
tent. Based on the agent’s knowledge-base derive will instantiate Pred|Args and send
corresponding replies. The second rule sends a special endof transmission message to
inform the querying agent of the completion of the query. The Protocol parameter avail-
able as the first parameter allows the recipient of queryref to know the protocol (jade,
jms etc.) that should be used for replies.

Listing 1.4. rcvMsg Example
1 % Reaction r u l e to general query re f
2 rcvMsg(Protocol,From,queryref,[Pred|Args]|Context) :-
3 derive([Pred|Args]),
4 sendMsg(Protocol,From,reply,[Pred|Args]|Context).
5 rcvMsg(Protocol,From,queryref,[Pred|Args],Protocol) :-
6 sendMsg(Protocol,From,end_of_transmission,[Pred|Args]|Context).

Now we will show how to deploy Prova’s derivation and reaction rules to implement
a distributed web-based bioinformatics application.

3 The GoProtein tool

Biological databases are growing rapidly. Currently there is much effort spent on anno-
tating these databases with terms from controlled, hierarchical vocabularies such as the
GeneOntology [5]. It is often useful to be able to retrieve all entries from a database,

Fig. 1. Sketch of the GoProtein tool workflow: The user interacts locally with a GUI on a client
machine. Queries for all proteins annotated with a given term from the ontology are sent to the
server. The server can access a database server to obtain protein IDs, which are annotated with
the given term. The remote protein database returns an entry for protein as XML file given the
protein ID. The protein database is used to display relevant information to the user.

which are annotated with a given term from the ontology. We want to build such a
query engine according to the scheme shown in Fig. 1. The application consists of four
agents, whose interaction is driven by reaction rules. The agents are a thin client, which
contains nothing but a GUI to interact with the user, a server, which handles queries of
the client, a database server, which contains the ontology and the protein IDs annotated
with the ontology terms, and a protein database which contains detailed information on
the protein in XML format. The client’s GUI displays the ontology. If the user selects a
term from the ontology, an event is fired, which triggers a request being sent to the Go-
Protein server. The server in turn queries the GeneOntology database server for protein
IDs, which have been annotated with the ontology term. If the user selects a specific
protein on the GUI, a query is sent to the server, which reacts by retrieving an XML file
from the remote protein database and by extracting relevant information from the file
and returning it to the client.

For this specific implementation of the GoProtein workflow we want to use the
GeneOntology [5] as annotation vocabulary and the Protein Databank PDB [1] as pro-
tein database. The Gene ontology (GO) contains over 19.000 terms organised in three
sub-ontologies relating to biological processes, molecular functions, and cellular com-
ponents. GeneOntology is available in XML, OWL, or database dump. Here we use
the database dump of the GeneOntology. The protein databank PDB is a database with
over 25.000 3D protein structures. Entries contain protein names, species, literature ref-
erences, and most important the 3D coordinates of all the atoms of the protein. PDB is
available as fat file format and XML.

Fig. 2. Screenshot of GoProtein: The left panel shows the ontology including the term ”protein
kinase inhibitor” and on the right the PDB entries annotated with the term.

4 Prova code for GoProtein

The client agent comprises the GUI and therefore makes heavy use of Java’s Swing
methods. For example, the MutableTreeNode class is used to display the GeneOntology
tree.

Listing 1.5. Client agent
1 gui() :-
2 println(["==========Window Loading=========="]),
3 % create the t ree and a p laceho lder f o r the IDs
4 Node1 = javax.swing.tree.DefaultMutableTreeNode("all"),
5 TreeModel = javax.swing.tree.DefaultTreeModel(Node1),
6 Tree = javax.swing.JTree(Node1),
7 Panel1 = javax.swing.JScrollPane(Tree),
8 IdList = javax.swing.JList(),
9 Panel2 = javax.swing.JScrollPane(IdList),

10 ...

For large knowledge bases such as the 19.000 GeneOntology terms it is important
to keep data on disc and load it into main memory only as needed. For this purpose,
the code snippet below defines the location of the database and uses built-in predicates
such as dbopen to open a database connection and sqlselect to issue database queries.
The concat statements are used to assemble the query string.

Listing 1.6. The Server Agent
1

2 :- eval (consult ("utils.prova")).

3

4 % Define database l o c a t i o n
5 location(database,"GO","jdbc:mysql://myserver","guest","guest").
6

7 % get d e s c r i p t i o n o f term
8 desc(Term, Desc) :-
9 dbopen("GO",DB),

10 unescape("\’", Quote),
11 concat(["term_definition.term_id = term.id AND term.name =", Quote, ...

...Term, Quote],A),
12 concat(["term, term_definition"],From),
13 sql_select(DB,From,[’term_definition.term_definition’,Desc],[where,A]).

The user can also issue a request to extract specified fields from URLs of XML
entries for a selected term. The code below shows the ability of Prova to connect to
different URLs, process their XML contents and retrieve the requested fields using the
built-in prediacte descendantValue.

Listing 1.7. XML Handler
1

2 searchPDB("http://pdbbeta.rcsb.org/pdb/displayFile.do?structureId=").
3

4 % get the xml f i l e
5 searchPDB(Query,XML):-
6 print(["Query for ",Query," at PDB"]),
7 searchPDB(BaseURL),
8 concat([BaseURL,Query, "&fileFormat=xml"],URLString),
9 retrieveXML(URLString,XML),

10 println(["done"]).
11

12 % search f o r ” sequence leng th ” values i n the xml f i l e o f a PDB ID
13 doSearchPDB(Term, Lst):-
14 searchPDB(Term,XML),
15 PDB = "PDBx:",
16 concat([PDB,"length_a"],La),
17 descendantValue(XML,La,A),!,
18 concat([PDB,"length_b"],Lb),
19 descendantValue(XML,Lb,B),!,
20 concat([PDB,"length_c"],Lc),
21 descendantValue(XML,Lc,C),!,
22 Lst = [A,B,C].
23

24 %%%%%%%%%%%%%%%% UTILITIY pred ica tes %%%%%%%%%%%%%%%%%%%%%%
25

26 retrieveXML(URLString,Root):-
27 URL = java.net.URL(URLString),
28 print(["."]),
29 Stream = URL.openStream(),
30 print(["."]),
31 ISR = java.io.InputStreamReader(Stream),
32 XMLResult = XML(ISR),
33 Root = XMLResult.getDocumentElement(),
34 print(["."]).

The communication between the client and server agents is performed by using
the Prova massaging and reaction rules to specify behaviour of the two agents. The
predicate remote in line 1 takes as an argument the specification of the target machine
we are communicating with. The reaction rule in line 5, 8, 10 are triggered by an event
from the GUI’s Swing component, while the one on line 15 is triggered by a message
sent by the server. One of the actions triggered by the reaction rule in line 5 is a message
sent to the server (last line).

Listing 1.8. The Client Agent
1 remote("ils_assign_server@servername").
2

3 % message t r a n s f e r f o r the l i s t e n e r s :
4 % Reaction to but ton ac t ions
5 rcvMsg(XID,Protocol,From,swing,[action,Cmd,Source|Extra]) :-
6 process_button(Source,Cmd).
7 % Reaction to incoming swing mouse c l i c k e d messages .
8 rcvMsg(XID,Protocol,From,swing,[mouse,clicked,Src|Extra]) :-
9 process_mouse(clicked,Src|Extra).

10 rcvMsg(XID,Protocol,From,swing,[mouse,entered,Src|Extra]) :-
11 process_mouse(entered,Src|Extra).
12

13 % message t r a n s f e r w i th the server
14 % act ions a f t e r r e c e i v i n g the r e s u l t s o f a query
15 rcvMsg(XID,Protocol,From,reply_qry,[IDs]|Context) :-
16 mainlist(List),
17 buildList(List, IDs).
18

19 % process executed when the ” Load Unipro t IDs ” but ton i s c l i c k e d
20 % i t f i n d s the se lec ted node , f i n d s a l l i t s assoc ia ted Un ip ro t IDs , and loads . . .

. . . them i n the L i s t
21 process_button(Button, "Load Uniprot IDs") :-
22 Tree = Button.getTree(),
23 Path = Tree.getSelectionPath(),
24 Node = Path.getLastPathComponent(),
25 Term = Node.toString(),
26 List = Button.getList(),
27 buildList(List, ["contacting server...","please wait"]),
28 % ask f o r the l i s t o f assoc ia ted uniprod IDs
29 remote(Remote),
30 sendMsg(XID,jade,Remote,uniprot,[Term],"context").

The complete code is available upon request and can be demonstrated at the work-
shop.

5 Comparison and Conclusion

The World Wide Web is a rich heterogenous media following a pattern of growth that
is uncentralized, directed by trends, and resistant to initiatives to enforce strong con-
formance to standards. A language for reactivity on the Web should be simple, offer
”‘out of the box”’ ability to handle most current de facto standards and offer specifica-
tion robustness through clear declarative semantics. The many recent efforts that have
been initiated to bring proper semantics to the Web - The Semantic Web - must also be
kept in mind, as they delineate what the Web could eventually become. One can thus
enumerate some ”‘must have”’ features for a Reactive Web Language:

– Ability to read and write XML, RDF, OWL, RSS and their variants;
– Possibility to interface to systems written in Java and/or embed java code;
– Connectivity to public/private databases, through different media (direct, web or

web-services);
– Simple access to URL-based resources: Web page, Xml file, RSS feed;
– Reactivity through the listening, processing and sending of events and actions;
– Declarative semantics and Event-Condition-Action paradigm.

In the following, we briefly compare Prova with other languages to address the
problem of reactivity on the web: JESS, a java based rule engine, XChange based on
the Xcerpt web query language, and ruleCore, an XML-based active rule engine.

5.1 JESS

Jess is a forward-chaining rule engine based on the Rete algorithm for the Java platform
[4]. Jess supports the development of rule-based systems which can be tightly coupled
to code written in the Java language. The syntax of the Jess language is Lisp-based. Java
functions can be called from Jess, and Jess can be extended by writing Java code. Jess
rules can be embedded in Java applications. Jess inherits from Java all the XML libraries
to read, process and write XML data. However, it does not provide rule-based wrappers
that provide these facilities in a transparent manner. The same holds for connectivity to
databases: it is possible through Java libraries but not truly integrated in the system. This
is one of the main differences between Prova and Jess, Prova has specialzed predicates
that allow easy and transparent access to databases, XML data, messaging exchange
between agents and even to Swing components. The fact that Jess is essentially a rule
engine, provides a very natural setup to write Event-Condition-Action rules in the con-
text of event propagation in the Web. Thus Business rules can be stated in a declarative
and transparent manner.

5.2 XChange

XChange is a declarative language built upon the declarative web query language Xcerpt[2].
It provides Web-specific capabilities such as propagation of changes on the Web and
event-based communications between Web sites. It is a work in progress and as such
does not yet have a production-ready implementation. Among the interesting charac-
teristics of XChange is its use of explicit temporal constructs to describe sequences
of events, their overlapping and composition. Transactions are also explicit in the lan-
guage, with the goal of bringing ACID properties to the Reactive Web. Reactivity is
achieved by having Event-Condition-Action rules at the core of the language. The main
difference between Prova and Xchange is that Prova is a full featured programming
language built-upon the robustness and richness of Java, whereas Xchange is geared
towards XML and HTML contents.

5.3 ruleCore

Of proved industrial strength, the ruleCore Enginewww.rulecore.com/ is a robust
implementation of an active rule engine server. The ruleCore Engine implements Event-
Condition-Action rules that are organised in situation trees. The goal of ruleCore is to
detect situations that arise as the temporal and logical composition of events. The rule
engine itself does not rely on a generic programming language as in the case of Prova
and Jess, but instead on the definition of situations as event detector trees. Connectivity
to other media and systems is achieved through the use of event and action wrappers,
most of which are provided ”‘out of the box”’ for databases and standard industrial mes-
senging frameworks like XML-RPC, Web Services, TIBCO Rendezvous, plain sockets
or IBM WebSphere MQ. The main difference between Prova and the ruleCore engine is,
as in the case of Xchange, that Prova is a generic rule language extending Java, whereas
ruleCore is a language-independent rule engine.

Prova is the choice of a Java programmer with Prolog experience who aims to de-
velop a system which needs a possibly thin layer of rules for reasoning with backward
chaining and for defining business rules and workflows with agent communication.
Prova is available at www.prova.ws.

References

1. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne. The protein data bank.Nucleic Acids Res, 28(1):235–242, 2000.

2. Franois Bry and Paula-Lavinia Patranjan. Reactivity on the web: Paradigms and applications
of the language xchange. InProceedings of 20th Annual ACM Symposium on Applied Com-
puting (SAC’2005). ACM, March 2005.

3. Jens Dietrich, Alexander Kozlenkov, Michael Schroeder, and Gerd Wagner. Rule-based agents
for the semantic web.Journal on Electronic Commerce Research Applications, 2(4):323–38,
2003.

4. Ernest Friedman-Hill.Jess in Action Java Rule-based Systems. Manning, 2003.
5. GeneOntologyConsortium. The Gene Ontology (GO) database and informatics resource.Nu-

cleic Acids Res., 1(32):D258–61, 2004.
6. Alexander Kozlenkov and Michael Schroeder. PROVA: Rule-based Java-scripting for a bioin-

formatics semantic web. In E. Rahm, editor,International Workshop on Data Integration in
the Life Sciences DILS, Leipzig, Germany, 2004. Springer.

