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Abstract9

In this survey, we show how the processes-as-formulas interpretation, where computations and10

proof-search are strongly connected, can be used to specify different concurrent behaviors as logical11

theories. The proposed interpretation is parametric and modular, and it faithfully captures behaviors12

such as: Linear and spatial computations, epistemic state of agents, and preferences in concurrent13

systems. The key for this modularity is the incorporation of multimodalities in a resource aware logic,14

together with the ability of quantifying on such modalities. We achieve tight adequacy theorems by15

relying on a focusing discipline that allows for controlling the proof search process.16
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1 Introduction24

Computational logic research has produced deep and fruitful cross-fertilizations between25

programming languages and proof theory. Arguably, the most well-known one is the Curry-26

Howard correspondence (also known as types-as-formulas) where (functional) programs27

correspond to formal proofs and their execution to cut-elimination. A second type of28

correspondence, processes-as-formulas (also known as computation-as-proof-search), was29

initiated by Miller [21] where, instead, (logic) programs correspond to formulas and their30

execution to proof search. These two foundational correspondences have been exploited to31

propose new programming language paradigms as well as greatly extend the expressiveness32

of existing ones.33

When processes or programs are specified as formulas, one has to be careful with the level34

of adequacy obtained. In particular, it is expected that logical steps in derivations correspond35

to steps of computations in programs. However, different from computational systems, where36

one step of computation is rigidly determined by the operation semantics, one step of logical37

reasoning depends strongly on the logical framework chosen. Also, the logic should capture,38

in a natural way, the behavior of programs. For instance, intuitionistic logic (IL) is not39

adequate to specify systems that may consume information (substructural behavior), execute40
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3:2 Process-as-formula interpretation: A substructural multimodal view

processes in different locations (spatial modalities) or time instances (timed reasoning), or41

when the information shared by processes is subject to quantitative information (such as42

preferences or costs).43

Hence the need for a more expressive logic (such as multimodal and resource aware logics)44

and an appropriate notion of normal proofs as the logical counterpart of the processes-as-45

formulas correspondence. This paper surveys one of such choices: focused linear logic with46

subexponentials (SELLF) [28]. We present different mechanisms previously explored by the47

authors to both: extend SELLF with quantification over subexponentials; and give adequate48

characterizations of existing concurrent languages. This fruitful collaboration between the49

two areas has been useful to provide reasoning techniques for process calculi with the motto50

reachability as entailment, and also to propose declarative extensions of concurrent languages51

with solid logical grounds.52

The focusing discipline [1] determines an alternating mechanism on proofs (between53

focused and unfocused phases), which controls the non-determinism during proof search,54

producing normal form proofs. Such normalization of proofs leads to a practical approach to55

identify logical steps: a focused step is a block determined by a focused phase followed by56

an unfocused one, in a (bottom-up) focused proof. In Section 2 we recall the proof theory57

of focused intuitionistic linear logic (ILLF), which will be the base logical language for the58

processes-as-formulas correspondences addressed in this paper. Section 3 then introduces the59

base computational counterpart of the correspondence, Concurrent Constraint Programming60

(CCP) [42], a declarative model for concurrency. We show how to adequately capture the61

behavior of CCP processes in ILLF.62

The level of adequacy attained in such interpretations will be important in order to justify63

the choice of the underlying logic: the closer the two systems are, the easier is to prove the64

correspondence. Also, a strong adequacy allows for the use of the logical system for proving65

properties of the computational system, or reconstructing counter-examples from failing66

derivations. Following [29], we classify the level of adequacy into two classes:67

FCP (full completeness of proofs) claims that processes outputting an observable are in68

1-1 correspondence with the corresponding completed proofs.69

FCD (full completeness of derivations) claims that one step of computation should70

correspond to one step of logical reasoning.71

In the first case, even though the outputs of a program are characterized by proofs in the72

underlying logic, it may be the case that there are steps in the logical reasoning that do not73

correspond to computational steps and vice-versa. In the second case, computational and74

(in our case, focused) logical steps are in one-to-one correspondence. We present a careful75

discussion about these different levels of adequacy regarding CCP and ILLF in Section 3.2,76

and indicate throughout the text, in each result, its level of adequacy.77

Even though (focused, intuitionistic) linear logic is suitable for the encoding of (vanilla)78

CCP, the situation changes when modalities are added to concurrent systems: For that,79

linear logic subexponentials are needed. In Section 4 we present SELLF, which shares with80

ILL all its connectives except the exponential: instead of having a single !, it may contain as81

many subexponentials as one needs (written !a). Such labels are organized in a pre-order,82

and different organizations give rise to different CCP flavors. Section 5 is then devoted83

to show how to add such structures parametrically to SELLF, obtaining strongly adequate84

specifications. In this way, processes may be executed and add/query constraints in different85

locations, where the meaning of such locations may vary, for example: Spaces of computation,86

the epistemic state of agents, time units, levels of preferences, etc. Modularity is guaranteed87

by the fact that the underline interpretation is the same: Locations in CCP become labels in88
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SELLF. Finally, Section 6 concludes the paper.89

2 Focused intuitionistic linear logic90

Linear logic (LL) is a substructural logic proposed by Girard [13] as a refinement of classical91

and intuitionistic logics, joining the dualities of the former with many of the constructive92

properties of the latter.93

In this paper, we will concentrate in the intuitionistic version of linear logic (ILL) [13],94

with formulas built from the following grammar95

F, G ::= A | 1 | 0 | ⊤ | F ⊗ G | F & G | F ⊕ G | F −◦ G | ! F | ∀x.F | ∃x.F96

Here, A denotes an atomic formula; −◦, ⊗, 1 represent the multiplicative implication,97

conjunction and true, respectively; &, ⊤, ⊕, 0 are the additive conjunction, true, disjunction,98

and false, respectively; ! is the exponential; and ∃, ∀ represent the existential and universal99

quantifiers, respectively.2100

These connectives can be separated into two classes, the negative: ⊸, &, ⊤, ∀ and the101

positive: ⊗, ⊕, !, 1, 0, ∃. The polarity of non-atomic formulas is inherited from its outermost102

connective (e.g., F ⊗ G is a positive formula) and any bias can be assigned to atomic103

formulas.3 This partition induces an alternating mechanism on proofs, known as focusing,104

which aims at reducing the non-determinism during proof search. In this sense, focused105

proofs can be interpreted as normal form proofs.106

The focusing discipline [1] is determined by the alternation of focused and unfocused phases107

in the proof construction. In the unfocused phase, inference rules can be applied eagerly108

and no backtracking is necessary; in the focused phase, on the other hand, either context109

restrictions apply, or choices within inference rules can lead to failures for which one may need110

to backtrack. These phases are totally determined by the polarities of formulas: provability111

is preserved when applying right/left rules for negative/positive formulas respectively, but112

not necessarily in other cases.113

The focused intuitionistic linear logic system (ILLF) is depicted in Figure 1.114

There are three contexts on the left side of ILLF sequents: the set Θ denotes the unbounded115

context, containing only formulas with a banged scope; Γ is a linear context containing only116

negative or atomic formulas; and ∆ is the general linear context. Observe that formulas117

in the context Θ behave as in classical logic: they can be weakened (erased) or contracted118

(duplicated). Formulas in the other contexts are linear, and are consumed when used.119

The phase distinction is reflected in the design of sequents in ILLF: the presence of “⇑”120

indicates unfocused sequents, while “⇓” marks the formula under focus in focused sequents.121

Sequents in ILLF have one of the following shapes:122

i. Θ; Γ ⇑ ∆ ⊢ F ⇑ is an unfocused sequent.123

ii. Θ; Γ ⇑ · ⊢ · ⇑ F is an unfocused sequent representing the end of an unfocused phase.124

iii. Θ; Γ ⊢ F ⇓ is a sequent focused on the right.125

iv. Θ; Γ ⇓ F ⊢ R is a sequent focused on the left.126

The swing between focused and unfocused phases is described below.127

2 Observe that the multiplicative false ⊥ could be added to ILL’s syntax. However, this would break the
nice feature of having exactly one formula on succedent of sequents.

3 Although the bias assigned to atoms does not interfere with provability, it changes considerably the
shape of proofs (see, e.g., [19]).

FSCD 2021
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Unfocused introduction rules

Θ; Γ ⇑ F, ∆ ⊢ G ⇑
Θ; Γ ⇑ ∆ ⊢ F −◦ G ⇑

−◦r
Θ; Γ ⇑ F, G, ∆ ⊢ R

Θ; Γ ⇑ F ⊗ G, ∆ ⊢ R
⊗l

F, Θ; Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ ! F, ∆ ⊢ R !l

Θ; Γ ⇑ ∆ ⊢ F ⇑ Θ; Γ ⇑ ∆ ⊢ G ⇑
Θ; Γ ⇑ ∆ ⊢ F & G ⇑ &r

Θ; Γ ⇑ F, ∆ ⊢ R Θ; Γ ⇑ G, ∆ ⊢ R
Θ; Γ ⇑ F ⊕ G, ∆ ⊢ R

⊕l

Θ; Γ ⇑ ∆ ⊢ F [y/x] ⇑
Θ; Γ ⇑ ∆ ⊢ ∀x.F ⇑ ∀r

Θ; Γ ⇑ F [y/x], ∆ ⊢ R
Θ; Γ ⇑ ∃x.F, ∆ ⊢ R ∃l

Θ; Γ ⇑ ∆ ⊢ ⊤ ⇑ ⊤r
Θ; Γ ⇑ ∆ ⊢ R

Θ; Γ ⇑ 1, ∆ ⊢ R 1l Θ; Γ ⇑ 0, ∆ ⊢ R 0l

Focused introduction rules

Θ; Γ1 ⊢ F ⇓ Θ; Γ2 ⇓ G ⊢ R

Θ; Γ1, Γ2 ⇓ F −◦ G ⊢ R
−◦l

Θ; Γ ⊢ Fi ⇓
Θ; Γ ⊢ F1 ⊕ F2 ⇓

⊕ri

Θ; Γ ⇓ Fi ⊢ R

Θ; Γ ⇓ F1 & F2 ⊢ R
&li

Θ; Γ1 ⊢ F ⇓ Θ; Γ2 ⊢ G ⇓
Θ; Γ1, Γ2 ⊢ F ⊗ G ⇓ ⊗r

Θ; · ⇑ · ⊢ F ⇑
Θ; · ⊢ ! F ⇓ !r

Θ; Γ ⇓ F [t/x] ⊢ R

Θ; Γ ⇓ ∀x.F ⊢ R
∀l

Θ; Γ ⊢ F [t/x] ⇓
Θ; Γ ⊢ ∃x.F ⇓ ∃r Θ; · ⊢ 1 ⇓ 1r

Structural and identity rules

Θ; Γ ⇓ N ⊢ R

Θ; Γ, N ⇑ · ⊢ · ⇑ R
Dl

Θ, F ; Γ ⇓ F ⊢ R

Θ, F ; Γ ⇑ · ⊢ · ⇑ R
Du

Θ; Γ ⊢ P ⇓
Θ; Γ ⇑ · ⊢ · ⇑ P

Dr

Θ; Γ ⇑ P ⊢ · ⇑ R

Θ; Γ ⇓ P ⊢ R
Rl

Θ; Γ ⇑ · ⊢ N ⇑
Θ; Γ ⊢ N ⇓ Rr

Θ; C, Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ C, ∆ ⊢ R Sl

Θ; Γ ⇑ · ⊢ · ⇑ D

Θ; Γ ⇑ · ⊢ D ⇑ Sr

Θ; A ⊢ A ⇓ I Θ, A; · ⊢ A ⇓ Ic

Here, P is positive, N is negative, C is a negative formula or positive atom, D a positive
formula or negative atom, and A is a positive atom. Other formulas are arbitrary. R denotes
∆1 ⇑ ∆2 where the union of ∆1 and ∆2 contains exactly one formula. In the rules ∀r and ∃l

the eigenvariable y does not occur free in any formula of the conclusion.

Figure 1 The focused intuitionistic linear sequent calculus ILLF.
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At the beginning of an unfocused phase, sequents have the shape (i) and: non-atomic128

negative formulas appearing in the right context, and positive non-atomic formulas129

appearing in ∆ are eagerly introduced; atomic/negative left formulas are stored in Γ130

using the store rule Sl; atomic/positive right formulas are stored in the outermost right131

context using the store rule Sr.132

When this phase ends, sequents have the form (ii).133

The focused phase begins by choosing, via one of the decide rules Dl, Du or Dr, a formula134

to be focused on, enabling sequents of the forms (iii) or (iv). Rules are then applied on135

the focused formula until either: an axiom is reached (in which case the proof ends); the136

right promotion rule !r is applied; or a negative formula on the right or a positive formula137

on the left is derived. At this point, focusing will be lost, and the proof switches to the138

unfocused phase again.139

We will call a focused step a focused phase followed by an unfocused one, in a (bottom-up)140

focused proof.141

Observe that the design of the axioms I and Ic in ILLF induces a positive polarity to atoms.142

As it will become clear in Section 3.2, this is necessary for guaranteeing the higher level of143

adequacy on encodings.144

Sequents in ILL will be denoted by Γ ⊢ A. Rules for ILL are the same as in ILLF, only not145

considering focusing, and the structural rules being substituted by the usual bang left rules:146

dereliction (D), weakening (W) and contraction (C):147

Γ, F ⊢ G

Γ, ! F ⊢ G
D Γ ⊢ G

Γ, ! F ⊢ G
W

Γ, ! F, ! F ⊢ G

Γ, ! F ⊢ G
C148

Note that, in ILLF, dereliction is embedded into the bang left (!l) and unbounded decide149

(Du) rules.150

3 Concurrent Constraint Processes as LL Formulas151

In this section we shall see how the process-as-formula interpretation can be used for both,152

providing verification techniques for a process calculus and characterizing different semantics153

for it in a uniform way. We start by describing the model of computation of Concurrent154

Constraint Programming (CCP) to later show that ILLF provides a suitable framework for155

interpreting CCP processes.156

Concurrent Constraint Programming (CCP) [41, 42, 43, 37] is a model for concurrency157

based upon the shared-variables communication model. CCP traces its origins back to the158

ideas of computing with constraints [25], Concurrent Logic Programming [45] and Constraint159

Logic Programming (CLP) [15]. Different from other models for concurrency, based on160

point-to-point communication as in CCS [23], the π-calculus [24], CSP [14] among several161

others, the CCP model focuses on the concept of partial information, traditionally referred162

to as constraints. Under this paradigm, the conception of store as valuation in the von163

Neumann model is replaced by the notion of store as constraint, and processes are seen as164

information transducers.165

The model of concurrency in CCP is quite simple: concurrent agents (or processes)166

interact with each other and their environment by posting and asking information (i.e.,167

constraints) in a medium, a so-called store. As we shall see, CCP processes can be seen as168

both computing processes (behavioral style) and as formulas in logic (logical declarative style).169

In particular, we shall see a strong connection between ILL and CCP originally developed in170

[11] and later refined in [34].171

172
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3:6 Process-as-formula interpretation: A substructural multimodal view

3.1 Constraint system and processes173

We start by defining the language of processes and constraints. The type of constraints174

processes may act on is not fixed but parametric in a constraint system. Such systems can be175

formalized as Scott information systems [44] as in [40], or they can be built upon a suitable176

fragment of logic e.g. as in [46, 11, 26]. Here we shall follow the second approach. More177

precisely, a constraint system is a tuple C = (C, |=∆) where the set of constraints C is built178

from a first-order signature and the grammar179

F ::= true | A | F ∧ F | ∃x.F180

where A is an atomic formula. We shall use c, c′, d, d′, etc, to denote elements in C. The181

entailment relation |=∆ is parametric on a set of non-logical axioms ∆ of the form ∀x.[c ⊃ c′]182

where all free variables in c and c′ are in x. We say that d entails c, written as d |=∆ c, iff183

the sequent ∆, d ⊢ c is provable in intuitionistic logic (IL). Intuitively, the entailment relation184

specifies inter-dependencies between constraints: c |=∆ d means that the information d can185

be deduced from the information represented by c, e.g. x > 42 |=∆ x > 0.186

The constraint store, shared by processes, is a conjunction of constraints and true denotes187

the empty store. The existential quantifier is used to specify variable hiding.188

Processes are built from constraint as follows:189

P, Q ::= tell(c) |
∑
i∈I

ask ci then Pi | P ∥ Q | (local x) P | p(x)190

A process tell(c) adds the constraint c to the store, thus incrementing the information191

in it. The guarded choice
∑
i∈I

ask ci then Pi, where I is a finite set of indexes, chooses192

non-deterministically one of the processes Pj whose guard cj can be deduced from the193

current store. If none of the guards can be deduced, this process remains blocked until more194

information is added. Hence, ask agents implement a synchronization mechanism based on195

entailment of constraints. The interleaved parallel composition of P and Q is denoted as196

P ∥ Q. The agent (local x) P behaves as P and binds the variable x to be local to it. Finally,197

given a possibly recursive process definition p(y) ∆= P , where all free variables of P are in198

the set of pairwise distinct variables y, the process p(x) evolves into P [x/y].199

The operational semantics of CCP is given by the transition relation γ −→ γ′ satisfying200

the rules in Figure 2. Here we follow the semantics in [11] and a configuration γ is a triple of201

the form (X; Γ; c), where c is a constraint specifying the store, Γ is a multiset of processes,202

and X is the set of hidden (local) variables of c and Γ. The multiset Γ = P1, P2, . . . , Pn203

represents the process P1 ∥ P2... ∥ Pn. We shall indistinguishably use both notations to204

denote parallel composition of processes.205

Processes are quotiented by a structural congruence relation ∼= satisfying: (1) P ∼= Q if206

they differ only by a renaming of bound variables (alpha-conversion); (2) P ∥ Q ∼= Q ∥ P ;207

and (3) P ∥ (Q ∥ R) ∼= (P ∥ Q) ∥ R. Furthermore, Γ = {P1, ..., Pn} ∼= {P ′
1, ..., P ′

n} = Γ′ iff208

Pi
∼= P ′

i for all 1 ≤ i ≤ n. Finally, (X; Γ; c) ∼= (X ′; Γ′; c′) iff X = X ′, Γ ∼= Γ′ and c ≡∆ c′
209

(i.e., c |=∆ c′ and c′ |=∆ c).210

Rules RT and RC are self-explanatory. Rule REQUIV says that structurally congruent211

processes have the same transitions. Rule RL adds the variable x to the set of variables X212

when it is fresh (otherwise, Rule REQUIV can be used to apply alpha conversion). The rule213

RA says that the process
∑
i∈I

ask ci then Pi evolves into Pj if the current store d entails cj .214
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(X; Γ; c) ∼= (X ′; Γ′; c′) −→ (Y ′; ∆′; d′) ∼= (Y ; ∆; d)
(X; Γ; c) −→ (Y ; ∆; d)

REQUIV

(X; tell(c), Γ; d) −→ (X; Γ; c ∧ d) RT
d |=∆ cj

⟨X,
∑
i∈I

ask ci then Pi, Γ, d⟩ −→ ⟨X, Pj , Γ, d⟩ RA

(X; (local x) P, Γ; d) −→ (X ∪ {x}; P, Γ; d) RL
p(x) ∆= P

(X; p(y), Γ; d) −→ (X; P [y/x], Γ; d) RC

Figure 2 Operational semantics of CCP. In RL, x ̸∈ X and it does not occur free in Γ nor in d.

▶ Definition 1 (Observables). Let −→∗ be the reflexive and transitive closure of −→. If215

(X; Γ; d) −→∗ (X ′; Γ′; d′) and ∃X ′.d′ |=∆ c we write (X; Γ; d) ⇓c. If X = ∅ and d = true we216

simply write Γ ⇓c.217

Intuitively, if P is a process then P ⇓c says that P outputs c under input true.218

3.2 Interpretation and adequacy219

We shall present different encodings for processes (P[[·]]) and constraints (C[[·]]) as formulas220

in ILL. Our goal is to show that the outputs of a process P can be characterized by221

proofs in ILLF. More precisely, we shall show that P outputs c iff a sequent of the form222

P [[Ψ]], C[[∆]] : ·⇑P [[P ]] ⊢ C[[c]] ⊗⊤⇑ is provable in ILLF, where Ψ is a set of process definitions223

and ∆ is the set of non-logical axioms in the constraint system. Note the use of ⊤: we shall224

erase the formulas corresponding to processes that were not executed. Below, we will see225

how to tune the process interpretation to get the highest level of adequacy possible.226

▶ Definition 2. Constraints and axioms in CCP are encoded in ILL as follows:227

C[[true]] = 1 C[[A]] = ! A C[[F1 ∧ F2]] = C[[F1]] ⊗ C[[F2]]
C[[∃x.F ]] = ∃x.C[[F ]] C[[∀x.(c ⊃ d)]] = ∀x.(C[[c]] −◦ C[[d]])

228

229

For the processes and process definition, the interpretation is the following:230

231

P[[tell(c)]]]] = C[[c]] P[[P ∥ Q]] = P[[P ]] ⊗ P[[Q]]
P[[

∑
i∈I

ask ci then Pi]] = &
i∈I

(C[[ci]] ⊸ P[[Pi]]) P[[(local x) P ]] = ∃x.P[[P ]]

P[[p(y)]] = p(y) P[[p(x) ∆= P ]] = ∀x.(p(x) ⊸ P[[P ]])

232

233

Since the store in CCP is monotonic, i.e., constraints cannot be removed, we mark atomic234

formulas with a bang (to be stored in the unbounded context). Parallel composition is235

identified with multiplicative conjunction and the act of choosing one of the branches in a236

non-deterministic choice is specified with additive conjunction. The action of querying the237

store in ask agents is specified with a linear implication. Similarly, the unfolding of a process238

definition is guarded by the atomic proposition p(y⃗) (denoting the call).239

If Γ is a set of constraints, or axioms of the form ∀x.[c ⊃ c′], we write C[[Γ]] to denote the240

set {C[[d]] | d ∈ Γ}. A similar convention applies for P[[·]]. Moreover, !Γ = {!F | F ∈ Γ}.241

▶ Theorem 3 (Adequacy – ILL [11]). Let (C, |=∆) be a constraint system, P be a process and242

Ψ be a set of process definitions. Then, for any constraint c, P ⇓c iff there is a proof of the243

sequent ! P[[Ψ]], ! C[[∆]], P[[P ]] ⊢ C[[c]] ⊗ ⊤ in ILL. The level of adequacy is FCP.244

Without focusing (as originally done in [11]), the proof of this theorem is not straightfor-245

ward and a low level of adequacy is obtained: there may be logical steps not corresponding246

FSCD 2021



3:8 Process-as-formula interpretation: A substructural multimodal view

to any operational step and vice-versa. Let us focus first in the case where logical steps do247

not correspond to the operational ones. We will come back to the other direction later.248

Consider the two derivations bellow.249

π1
Γ, c1 −◦ F1 ⊢ d

Γ, (c1 −◦ F1) & (c2 −◦ F2) ⊢ d
&l

π2
Γ1, F1 ⊢ d

π3
Γ2 ⊢ c1

Γ1, Γ2, c1 ⊸ F1 ⊢ d
⊸l (1)250

In the first, one of the branches is chosen but, in π1, it could be the case that c1 is never251

proved (and F1 is never added to the context). This is not the intended meaning in Rule RA,252

that first checks the entailment of cj to immediately add the corresponding process Pj to the253

context. In the second example, π3 could contain sub-derivations that have nothing to do254

with the proof of the guard c1. For instance, process definitions could be unfolded or other255

processes could be executed. This would correspond, operationally, to the act of triggering256

an ask process ask c then P with no guarantee that its guard c will be derivable only from257

the set of non-logical axioms ∆ and the current store. For instance, it may be the case, in258

π3, that c1 will be later produced by a process Q such that P[[Q]] ∈ Γ2. This is clearly not259

allowed by the operational semantics.260

Let’s now put focusing into play. An inspection in the encoding reveals that the fragment
of ILL used is restricted to the following grammar:

G := 1 | ! A | G ⊗ G | ∃x.G Guards and Goals
P := G | P ⊗ P | P & P | G ⊸ P | ∃x.P | p(t) Processes
PD := ∀x.p(x) ⊸ P. Process Definitions

where A is an atomic formula (constraint) in C and p (a process identifier) is also atomic but261

p /∈ C. In any derivation, the only formulas that can appear on the right are guards/goals G262

and heads p. The other formulas, including processes, process definitions and axioms, appear263

on the left. Hence, only instances of the unfocused rules 1l, ⊗l, ∃l, !l, ⊤r and the focused rules264

⊗r,⊸l, ∃r, !r, &l, ∀l are used.265

Observe that formulas G, p are strictly positive. Thus, focusing on such a formula on266

the right either forces finishing the proof, or the formula will be entirely decomposed into267

formulas of the shape 1 or ! A. This means that a proof of A can use only the theory ∆, the268

encoding of constraints and process definitions (since all of them are unbounded). In fact, we269

can show that the encoding of process definitions can be weakened (since calls of the form270

p(y⃗) are necessarily stored in the linear context). Hence, when a goal is focused on, it must271

be completely decomposed, and the atomic constraints must be proved only from the current272

store and the non-logical axioms.273

Formulas occurring on the left of sequents can be positive or negative. Positive formulas on274

the left (that cannot be focused on) come from the interpretation of tell, parallel composition275

and locality that do not need any interaction with the context. Note, for instance, that276

the formula ∃x. ! G1 ⊗ ! G2, resulting from the encoding of tell(∃x.G1 ∧ G2), can be entirely277

decomposed in an unfocused phase using the rules ⊗l, ∃l and !l. On the other hand, negative278

formulas on the left (that can be chosen for focusing) come from the encodings of guarded279

choices and process definitions. They do need to interact with the environment, either for280

choosing a path to follow (in non-deterministic choices), or waiting for a guard to be available281

(in asks or procedure calls).282

Due to completeness of focusing [1], Theorem 3 trivially holds if we replace in it ILL with283

ILLF. But using directly the focused system, the proof of the theorem becomes simpler. For284

instance, it is a routine exercise to show that non-logical axioms permute up, and it is always285

possible to apply them at the top of proofs. Moreover, situations as the ones described286
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after the derivations in Equation (1) are not longer valid in the focused system: focusing287

over c1 −◦ F1 implies immediately proving c1 (from the logical axioms and accumulated288

constraints), thus reflecting exactly the operational semantics of CCP.289

▶ Example 4. Consider a community coffee machine, which is triggered by the insertion290

of a coin, always available at the side of the machine. When the user inserts the coin, the291

machine delivers a coffee and returns the coin, which will be available for the next user. This292

machine can be specified as the CCP process293

P = tell(coin) ∥ m() where m() ∆= ask coin then (tell(coffee) ∥ m())294

Hence, P ⇓c, where c = coin ∧ coffee:295

⟨∅, P, true⟩ −→ ⟨∅, m(), coin⟩ −→ ⟨∅, tell(coffee) ∥ m(), coin⟩ −→ ⟨∅, m(), coin ∧ coffee⟩296

On the other hand, the sequent P[[P ]] ⊢ C[[c]] ⊗ ⊤ has the following focused proof297

coin, P[[m()]]; · ⊢ ! coin ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; · ⊢ ! coffee ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; · ⊢ ! coin ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; m() ⊢ (! coffee ⊗ ! coin) ⊗ ⊤ ⇓
⊗r, ⊤r

coin, P[[m()]]; · ⇓ ! coffee ⊗ m() ⊢ (! coffee ⊗ ! coin) ⊗ ⊤
Rl, ⊗l, !l, Dr

coin, P[[m()]]; m() ⇓ m() −◦ (! coin −◦ (! coffee ⊗ m())) ⊢ (! coffee ⊗ ! coin) ⊗ ⊤
−◦l, I

coin, P[[m()]]; m() ⇑ · ⊢ · ⇑ (! coffee ⊗ ! coin) ⊗ ⊤ Dl

P[[m()]]; · ⇑ ! coin ⊗ m() ⊢ · ⇑ (! coffee ⊗ ! coin) ⊗ ⊤
⊗l, !l, Sl

298

Bottom up, we introduce the tell process in the unfocused phase. Then, after focusing on299

the encoding of the ask agents, the guard coin is deduced (left-most derivation), and the300

token coin is stored into the classical context, thus reflecting the final configuration in the301

execution of the process.302

Unfortunately, even with focusing, the adequacy level continues to be FCP. In fact, the303

focusing discipline causes that some CCP computations do not have a corresponding proof304

in ILLF. To see that, consider the following process305

P = tell(a ∧ b) ∥ ask a then ask b then tell(ok) ∥
ask b then ask a then tell(ok′)306

We denote the two external ask agents in P as Q1 and Q2 respectively. The opera-307

tional semantics dictates that there are three possible transitions leading to the final store308

d = a ∧ b ∧ ok ∧ ok′. All such transitions start by executing tell(a ∧ b):309

310
Trace 1: ⟨∅, P, true⟩ −→ ⟨∅, Q1 ∥ Q2, a ∧ b⟩ −→ ⟨∅, ask b then tell(ok) ∥ Q2, a ∧ b⟩

−→ ⟨∅, tell(ok) ∥ Q2, a ∧ b⟩ −→ ⟨∅, Q2, a ∧ b ∧ ok⟩ −→∗ ⟨∅, ·, d⟩ ̸−→
Trace 2: ⟨∅, P, true⟩ −→ ⟨∅, Q1 ∥ Q2, a ∧ b⟩ −→ ⟨∅, Q1 ∥ ask a then tell(ok′), a ∧ b⟩

−→ ⟨∅, Q1 ∥ tell(ok′), a ∧ b⟩ −→ ⟨∅, Q1, a ∧ b ∧ ok′⟩ −→∗ ⟨∅, ·, d⟩ ̸−→
Trace 3: ⟨∅; P ; true⟩ −→ ⟨∅; Q1 ∥ Q2; a ∧ b⟩ −→ ⟨∅; ask b then tell(ok) ∥ Q2; a ∧ b⟩

−→ ⟨∅, ask b then tell(ok) ∥ ask a then tell(ok′), a ∧ b⟩
−→ ⟨∅, tell(ok) ∥ ask a then tell(ok′), a ∧ b⟩ −→ ⟨∅, tell(ok) ∥ tell(ok′), a ∧ b⟩
−→∗ ⟨∅, ·, d⟩

311

312

Trace 1 and Trace 2 correspond exactly to a different focused proof of the sequent313

P[[P ]] ⊢ C[[d]]: one focusing first on P[[Q1]] and the other focusing first on P[[Q2]]. On the314

other hand, Trace 3 corresponds to an interleaved execution of Q1 and Q2. We note that315

such a trace does not have any correspondent derivation in ILLF. In fact, since ⊸ is a316

negative connective, focusing on C[[Q1]] will decompose the formula !a ⊸!b ⊸!ok producing317

the focused formula !b ⊸!ok, which is still negative. Hence focusing cannot be lost and the318

inner ask has to be triggered.319

This example shows something interesting: although the formulas F ⊗ G −◦ H and320

F −◦ G −◦ H are logically equivalent, they are operationally different when concurrent321
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3:10 Process-as-formula interpretation: A substructural multimodal view

computations are considered. In fact, if we allow processes to consume constraints as the322

linear version of CCP in [11], an interleaving execution as the one in Trace 3 may not output323

the constraint ok, since the two agents are competing for the same resources.324

In order to recover interleaving executions as the one in Trace 3, logical delays [28] can325

be introduced.326

▶ Definition 5. The positive and negative delay operators δ+(·), δ−(·) are defined as δ+(F ) =327

F ⊗ 1 and δ−(F ) = 1 −◦ F respectively.328

Observe that δ+(F ) ≡ δ−(F ) ≡ F , hence delays can be used in order to replace a formula329

with a provably equivalent formula of a given polarity.330

We define the encoding P[[·]]+ as P[[·]] but replacing the following cases:331

332

P[[
∑
i∈I

ask ci then Pi]]+ = &
i∈I

(C[[ci]] ⊸ δ+(P[[Pi]]+))

P[[p(x) ∆= P ]]+ = ∀x.p(x) ⊸ δ+(P[[P ]]+)
333

The use of delays forces the focused phase to end, e.g., once the guard of the ask agent is334

entailed. In this encoding, we can prove a stronger adequacy theorem.335

▶ Theorem 6 (Strong adequacy [34]). Let (C, |=∆) be a constraint system, P be a process336

and Ψ be a set of process definitions. Then, for any constraint c,337

P ⇓c iff there is a proof of the sequent P[[Ψ]]+, C[[∆]]; · ⇑ P[[P ]]+ ⊢ · ⇑ C[[c]] ⊗ ⊤338

in ILLF. The adequacy level is FCD.339

Now derivations in logic have a one-to-one correspondence with traces of a computation340

in a CCP program.341

It is possible to modify the encoding to introduce negative actions (tell, parallel and342

local) during a focused phase (thus counting them as a focused step). For that, it suffices to343

introduce, in the encoding, negative delays δ−(F ). By using a multi-focusing systems [38],344

maximal parallelism semantics [9] - where all the enabled agents must all proceed in one345

step - can be also captured. Finally, if recursive definitions are interpreted as fixed points,346

more interesting properties of infinite computations can be specified and proved. See [34] for347

further details.348

4 LL with multi-modalities349

A careful analysis of the rules for the exponential ! in Figure 1 reveals that this connective350

has a differentiated behavior w.r.t. the other ones. In fact, ! is the only operator having a351

positive/negative behavior: the application of the right rule (!r) immediately breaks focusing.352

Also, this is the only rule in ILLF that is context dependent, in the sense that it demands the353

linear context Γ to be empty in order to be applied.354

This distinguished character of the exponential in linear logic is akin to the behavior355

found in modal connectives. In particular, the connective ! is not canonical, in the sense356

that, if we label ! with different colors, say b (for blue – !b) and r (for red – !r), but with357

the same introduction rules, then it is not possible to prove, in the resulting proof system,358

the equivalence !rA ≡ !bA for an arbitrary formula A, where H ≡ G denotes the formula359

(H ⊸ G) & (G ⊸ H). Not surprisingly, this exercise would have a different outcome for360

any other linear logic connective. For instance, if we construct a proof system with two361

labeled connectives, e.g., ⊗r and ⊗b, together with their introduction rules, then it would be362

possible to prove A ⊗b B ≡ A ⊗r B for any A and B. This opens the possibility of defining363

new connectives: the colored exponentials, known as subexponentials [8].364
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4.1 Linear logic with subexponentials365

Linear logic with subexponentials (SELL)4 shares with intuitionistic linear logic all its366

connectives except the exponential: instead of having a single !, SELL may contain as many367

subexponentials, written !a for a label (or color) a, as one needs.368

Such labels are organized in a pre-order, giving rise to a subexponential signature Σ =369

⟨I, ⪯, U⟩, where I is a set of labels, U ⊆ I is a set specifying which subexponentials behave370

classically (i.e., those labels that allow for weakening and contraction), and ⪯ is a pre-order371

among the elements of I. We shall use a, b, . . . to range over elements in I, and we will372

assume that ⪯ is upwardly closed with respect to U , i.e., if a ∈ U and a ⪯ b, then b ∈ U .373

The division of unbounded (a ∈ U) and linear or bounded (a ̸∈ U) subexponentials induces374

also a partition of the subexponential context Θ, which is split into two: a set Θu and a375

multiset Θb of labeled formulas, having the form376

Θu = {a1 : Θu
1 , . . . , an : Θu

n} Θb = {b1 : Θb
1, . . . , bm : Θb

m}377

The formulas in Θu
i are under the scope of the unbounded subexponential !ai , and formulas378

in Θb
j are under the scope of the bounded subexponential !bj . The linear context Γ continues379

containing only negative or atomic formulas, as in ILLF.380

The focused proof system SELLF [28] is constructed by adding all the rules for the381

intuitionistic linear logic connectives as shown in Figure 1,5 except for the exponentials. The382

rules for subexponentials are the following:383

A formula F under the scope of !a is stored in the exponential context Θ accordingly: if384

a is unbounded/bounded, then F is added to the set/multiset Θa, which is created if it385

does not exist. This action is represented by Θ ⊎ {a : F}.386

Θ ⊎ {a : F}; Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ !aF, ∆ ⊢ R !al

387

The unbounded decide rule in ILLF is split into bounded and unbounded versions,388

depending of the nature of the subexponential.389

Θu, Θb; Γ ⇓ F ⊢ R

Θu, Θb ⊎ {a : F}; Γ ⇑ · ⊢ · ⇑ R
Db

Θu ⊎ {a : F}, Θb; Γ ⇓ F ⊢ R

Θu ⊎ {a : F}, Θb; Γ ⇑ · ⊢ · ⇑ R
Du

390

The promotion rule has the form391

Θu
≥a, Θb; · ⇑ · ⊢ F ⇑
Θu, Θb; · ⊢ !aF ⇓

!ar
392

with the proviso that, for all bj : Θb
j in Θb, it must be the case that a ⪯ bj . In the premise393

of the rule, Θu
≥a ⊆ Θu contains only elements of the form ai : Θu

i where a ⪯ ai (the other394

contexts are weakened). That is, !aF is provable only if F can be proved in the presence395

of subexponentials greater than a.396

It is known that subexponentials greatly increase the expressiveness of the system when397

compared to linear logic. For instance, subexponentials can be used to represent contexts398

4 Although in this paper we are mostly interested in the intuitionistic version of SELL, it was proven
in [3] that classical and intuitionistic subexponential logics are equally expressive. Hence we will abuse
the notation and use SELL for intuitionistic linear logic system with subexponentials.

5 Taking the extra-care of splitting the bounded context Θb for the multiplicative rules −◦l and ⊗r.
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of proof systems [32], to mark the epistemic state of agents [27], or to specify locations399

in sequential computations [28]. The key difference is that, while linear logic has only400

seven logically distinct prefixes of bangs and question-marks (? is the dual of !), SELL401

allows for an unbounded number of such prefixes, e.g., !i, or !i?j . As we show later, by402

using different prefixes, we can interpret subexponentials in more creative ways, such as403

linear constraints, epistemic modalities or preferences. The interested reader can also check404

in [30, 35, 31] the interpretation of subexponentials as temporal units, and the study of405

dynamical subexponentials in distributed systems.406

The organization of subexponentials in pre-orders brings at least two interesting aspects407

that can be further investigated: what kind of refinements of the proof system can be obtained408

by adopting richer algebraic structures for subexponentials (Section 4.2 below); and what is409

the proof-theoretic notion of quantification over modalities (Section 4.3 below).410

Being able to quantify over subexponentials is important, e.g., for specifying properties411

that are valid in an unbounded number of locations or agents. It is also crucial for establishing412

a certain notion of mobility, or permissibility of resources, that can be available, e.g., iff they413

are marked with a label of some specific sort. But one has to be careful here: the pre-order414

structure is a minimal requirement in subexponential signatures in order to guarantee the415

cut-elimination property [8]. Since, in the presence of quantifiers, proving cut-elimination416

requires substitution lemmas, a naive approach of exchanging labels could invalidate such417

results (see [31] for an extensive discussion on the topic).418

On the other hand, if we move above the pre-order minimality and consider, e.g., ∧-semi-419

lattices as subexponential structures, then the side condition in the promotion rule, a ⪯ ai420

for all ai ∈ Θ≥a, is equivalent to a ⪯
∧

i ai. And this reflects certain kinds of preferences, as421

explained next.422

4.2 Richer subexponential signatures423

We now explore a refinement of SELLF, where richer structures are considered as subexponen-424

tial signatures. For that, we shall use an algebraic structure that defines a mean to compare425

(⪯) and accumulate (•) values.426

More precisely, a complete lattice monoid [12] is a tuple CLM = ⟨D, ⪯, •⟩ such that427

⟨D, ⪯⟩ is a complete lattice, ⊥ and ⊤ are, respectively, the least and the greatest elements of428

D and {D, •, ⊤} is a abelian monoid. Moreover, • distributes over lubs, i.e., for all v ∈ D and429

X ⊆ D, v • ⊔X = ⊔{v • x | x ∈ X}. Due to distributivity, • is monotone and decreasing:430

a • b ⪯ a.431

Observe that, if the SELL signature structure is a lattice, then a ⪯ {b, c} is equivalent to432

a ⪯ glb(b, c). Moreover, in the presence of •, promotion can be refined so to consider the433

combination of values as follows.434

Given a SELL signature Σ = ⟨D, ⪯, U⟩ with ⟨D, ⪯, •⟩ a CLM , the promotion rule !ar• is435

defined as:436

Θu
≥a, Θb; · ⇑ · ⊢ F ⇑
Θu, Θb; · ⊢ !aF ⇓

!ar•, provided a ⪯ •{ai, bj}
437

Note that, if the CLM is •-idempotent (i.e. a • a = a), then glb(a, b) = a • b, and the above438

rule coincides with SELLF’s promotion rule.439

▶ Example 7. Consider the signature Σ = ⟨D, ⪯, D⟩, with the following instances of CLM .440

⟨{pub, sec}, ⪯, ∧⟩, where pub and sec represent public and private information, respect-441

ively. The ordering is pub ≺ sec and a ∧ b = sec iff a = b = sec. Hence, any proof of442

Θ; · ⊢ !secF ⇓ does not make use of any public information.443
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⟨[0, 1], ≤R, min⟩ (fuzzy), where [0, 1] ⊂ R, and ≤R is the usual order in R. In this case,444

we can interpret !0.2c as “c is believed with preference 0.2”. Note that the sequent445

!0.2c ⊗ !0.7d ⊢ !a(c ⊗ d) is provable only if a ≤R 0.2.446

⟨[0, 1], ≤R, ×⟩ (probabilistic), where × is the multiplication operator in R. This is a non-447

idempotent CLM , and the sequent !0.2c ⊗ !0.7d ⊢ !a(c ⊗ d) is provable only if a ≤R 0.14.448

In [39] we have showed that this new version of the promotion rule is not at all ad-hoc.449

The resulting system, SELLS, is a smooth extension of ILLF and it is a closed subsystem of450

SELLF, which is strict when non-idempotent CLMs are considered. Hence SELLS inherits451

all SELLF good properties such as cut-elimination.452

The SELLS system has inspired the development of new CCP-based calculi where processes453

can tell and ask soft constraints, understood as formulas of the form !ac where a is an element454

of a given CLM [39]. Also, since the underlying logic is the same, it is possible to obtain455

adequate interpretations of processes as formulas as the ones in Section 3.2. More interestingly,456

it is also possible to combine, in a uniform way, different modalities [35], all of them grounded457

on linear logic principles. Some of these modalities will be explored in Section 5.458

4.3 Subexponential Quantifiers459

This section introduces the focused system SELLF⋒, containing two novel connectives ⋒ and460

⋓, representing, respectively, a universal and existential quantifiers over subexponentials.6461

As mentioned in Section 4.1, in order to guarantee cut-elimination of the resulting system,462

the substitution of subexponentials in the rules for quantification should be done carefully.463

As showed in [31], it is enough to require that labels are substituted, bottom-up, for smaller464

ones. Also, the possibility of creating new labels dynamically implies that there should be465

two sorts of labels: constants and variables. This justifies the next definition.466

▶ Definition 8. Given a pre-order (I, ⪯) and a ∈ I, the ideal generated by a is the set467

↓ a = {b ∈ I | b ⪯ a}.468

The subexponential signature of SELL⋒ is the triple Σ = ⟨I, ⪯, U⟩, where I is a set of469

subexponential constants, ⪯ is a pre-order over I and U ⊆ I is the upwardly closed set of470

unbounded constants.471

The sets of typed subexponential constants and typed subexponential variables are472

denoted respectively by473

TΣ = {b : a | b ∈↓ a} Tx = {lx1 : a1, . . . , lxn : an}474

where {lx1 , . . . , lxn
} is a disjoint set of subexponential variables, and {a1, . . . , an} ⊆ I are475

subexponential constants.476

Formally, only these subexponential constants and variables may appear free in an index of477

subexponential bangs and question marks.478

Sequents in SELLF⋒ have the same form as in SELLF, with the difference that there is an479

extra context T = TΣ ∪ Tx.480

The rules for for ⋒ and ⋓ are the novelty with respect to the focused proof system for481

SELLF. They behave exactly as the first-order quantifiers: the ⋒r and ⋓l belong to the482

6 Some motivation for the symbols ⋒ and ⋓. The former resembles the symbol for intersection, which
is the usual semantics assigned to for all quantifiers, namely, the intersection of all models, while the
latter is same for exists and union.
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negative phase because they are invertible, while ⋒l and ⋓r are positive since they are not483

invertible.484

T ∪ {le : a}; Θ; Γ ⇑ ∆ ⊢ F [le/lx] ⇑
T ; Θ; Γ ⇑ ∆ ⊢ ⋒lx : a.F ⇑

⋒r
T ∪ {le : a}; Θ; Γ ⇑ ∆, F [le/lx] ⊢ R

T ; Θ; Γ ⇑ ∆,⋓lx : a.F ⊢ R
⋓l

T ; Θ; Γ ⇓ F [l/lx] ⊢ R

T ; Θ; Γ ⇓ ⋒lx : a.F ⊢ R
⋒l

T ; Θ; Γ ⊢ F [l/lx] ⇓
T ; Θ; Γ ⊢ ⋓lx : a.F ⇓

⋓r

485

In the left rule of ⋒ and the right rule of ⋓, lx is substituted with a subexponential of the486

right type: l : b ∈ T , b ∈↓ a. In the rules ⋒r and ⋓l, a fresh variable le of type a is created487

and added to the context T .488

Next, we shall see that the quantifiers allows for encoding, in a modular way, systems489

dealing with an unbounded number of modalities.490

5 Parametric interpretations491

This section illustrates how focusing, subexponentials and quantifiers in SELLF⋒ can be492

used to give adequate interpretations to CCP calculi featuring different modalities. The493

interpretation is modular: there is only one base logic – SELL⋒; and parametric: each modal494

flavor of CCP is specified by a signature in SELL having a particular algebraic structure. In495

this way, processes may be executed and add/query constraints in different locations, where496

the meaning of such locations may vary, for example: spaces of computation, the epistemic497

state of agents, time units, levels of preferences, etc. But the underline interpretation is the498

same: locations in CCP become labels in SELL.499

Another modular aspect of our process-as-formula interpretation is the organization of500

the encodings of constraints, processes and process definitions, into non-comparable families501

of subexponentials, so that focusing on an element of a family forces all elements of the502

other families to be erased during proof search. This ensures the discipline necessary for503

guaranteeing the highest level of adequacy (FCD).504

Formally, let M be an underlying set of labels, with least and greatest elements represented505

by nil and ∞ respectively, ordered with a pre-order ⪯M . The families of subexponentials506

are built with marked copies of elements of M : c(·) for constraints, p(·) for processes, and507

d(·) for process definitions. The subexponential signature Σ = ⟨I, ⪯, U⟩ is built from M in508

the following way:509

The set of labels is: I = {l, c(l), p(l), d(l) | l ∈ M}; that is, besides the elements in M ,510

we consider three additional distinct copies of the labels, each of them marked with the511

appropriate family.512

The subexponential pre-order is: l ⪯ l′ iff l ⪯M l′ and f(l) ⪯ f(l′) iff l ⪯M l′ where513

f ∈ {c, p, d}; note that subexponentials pertaining to different families are not related.514

The set U of unbounded subexponentials will vary depending on the encoded system.515

Constraints and CCP processes are encoded into SELLF⋒ by using the functions C[[·]]l and516

P[[·]]l as in Definition 2, now parametric w.r.t. subexponentials l ∈ M as follows.7517

7 We observe that, technically, the encoding functions should also consider subexponential variables.
However, the encoded processes/axioms are stored on left contexts, and the left introduction rule for
universal quantifiers does not create fresh variables.
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▶ Definition 9 (General Encoding). Constraints and axioms of the constraint system are518

encoded in SELL⋒ as:519

C[[true]]l = 1 C[[A]]l = !c(l)A C[[c1 ∧ c2]]l = C[[c1]]l ⊗ C[[c2]]l520

521

C[[∃x.c]]l = ∃x.C[[c]]l C[[∀x.(d ⊃ c)]] = ⋒lx : ∞.∀x.(C[[d]]lx −◦ C[[c]]lx)522

The encoding of processes and process definitions is:523

P[[tell(c)]]l = !p(l)[⋒lx : l.(C[[c]]lx)]
P[[

∑
i∈I

ask c then P ]]l = !p(l)[⋒lx : l.(&
i∈I

[C[[ci]]lx −◦ P[[Pi]]lx ])]

P[[(local x) P ]]l = !p(l)[⋒lx : l.∃x.(P[[P ]]lx)]
P[[P ∥ Q]]l = P[[P ]]l ⊗ P[[Q]]l
P[[p(x)]]l = !d(l)p(x)
P[[p(x⃗) ∆= P ]] = ⋒lx : ∞.∀x.(!d(lx)p(x) −◦ P[[P ]]lx

)

524

The main difference between the encodings in SELL⋒ and ILL is the presence of mobility525

of processes, given by the universal quantifier ⋒ over subexponentials. This enables the526

specification of systems to govern an unbounded number of modalities.527

Intuitively, when (left) focusing over a quantified clause of the form ⋒lx : l.!f(lx)F , a528

location a ∈↓ l is chosen, and F becomes available in the location a, inside a family f, which529

is totally determined by the nature of the encoded object: c for constraints, p for processes,530

d for process definitions. In the special case of l = ∞, F can be allocated anywhere inside531

the family. This is the case for example, of axioms and process definitions.532

Let us now illustrate how the use of subexponentials and quantifiers allow for attaining533

the highest level of adequacy. The first thing to note is that, due to the shape of the encoding,534

the subexponential context can be divided into 3 zones: C, D and P , containing the formulas535

marked, respectively, with subexponentials of the form c(·), d(·) and p(·).536

Using simple logical equivalences, we can rewrite the encoding of a constraint C[[c]]l so537

that it has the following shape ∃x.
(

!c(l1)A1 ⊗ · · · ⊗ !c(ln)An

)
, where A1, . . . , An are atomic538

(positive) formulas. Whenever such a formula appears in the left-hand side, it is completely539

decomposed and stored in the C context:540

C ⊎ {c(l1) : A1, · · · , c(ln) : An}, D, P; · ⇑ ∆ ⊢ R

C, D, P; · ⇑ !c(l1)A1, · · · , !c(ln)An, ∆ ⊢ R
!al

C, D, P; · ⇑ !c(l1)A1 ⊗ · · · ⊗ !c(ln)An, ∆ ⊢ R
∃l, ⊗l

541

That is, in the negative phase, the atomic formulas A1, . . . , An appearing in the premise of542

this derivation are moved to the contexts C.543

Consider now a derivation that focuses on the encoding of a process. For instance, let544

Q = ask c then P , and P [[Q]]l = !p(l)F , with F = ⋒lx : a.(C[[c]]lx
−◦ P [[P ]]lx

). Focusing on F545

results necessarily in a focused derivation of the following shape:546

π
C′; · ⊢ C[[c]]l′ ⇓

C′′, D, P ′ ⊎ {p(l′) : FP }; · ⇑ · ⊢ G ⇑
C′′, D, P ′; · ⇓ P[[P ]]l′ ⊢ G

Rl, !al

C, D, P ′; · ⇓ ⋒lx : a(C[[c]]lx −◦ P[[P ]]lx ) ⊢ G
⋒l,⊸l

C, D, P ⊎ {p(l) : F }; · ⇑ · ⊢ · ⇑ G
Du/Db

547

If p(l) ∈ U (resp. p(l) ̸∈ U) the rule Du (resp. Db is applied) and P ′ = P ⊎ {p(l) : F} (resp.548

P ′ = P). Since C[[c]]l′ contains only positive formulas, it will be totally decomposed, and549
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every exponential context in π will be a C context. That is, only constraints and axioms550

from the constraint system can be used in the proof π.551

A similar analysis can be done when a process definition is selected: only the context D,552

storing all the calls, can be used to entail the needed guard.553

In the following, we instantiate the general definition of the encoding for different flavors554

of CCP. The adequacy we obtain, in each case is at the FCD level.555

Classical and linear CCP556

For encoding the language in Section 3, the set of modalities is the simplest one: M = {nil, ∞}.557

All the subexponentials but p(nil) and d(·) are unbounded.558

▶ Theorem 10. Let (C, |=∆) be a constraint system, P be a CCP process and Ψ be a set of559

process definitions. Then, for any constraint c,560

P ⇓c iff · ⇑!c(∞)C[[∆]],!p(∞)JΨK, P[[P ]]nil ⊢ C[[c]]nil ⊗ ⊤ ⇑561

It is worth noticing that all the processes remain in the location nil (denoting “without562

modality”) and then, the universal quantification in the encoding is always forced to instanti-563

ate lx with nil.564

565

Linear CCP. As we already know, the store in CCP increases monotonically: once a566

constraint is added, it cannot be removed from the store. This can be problematic for567

the specification of systems where resources can be consumed. In linear CCP (lcc) [11],568

constraints are built from formulas in the following fragment of ILL:569

F ::= A | 1 | F ⊗ F | ∃x.F |!F570

In this setting, the empty store is 1 and constraints are accumulated using ⊗. The extra571

case !F , as expected, is used to denote persistent constraints.572

▶ Example 11. The vending coffee machine has the same CCP specification as the community573

coffee machine presented in Example 4. However, as expected, linear asks consume constraints574

when querying the store and the coin does not come back after delivering the coffee:575

⟨∅, P, 1⟩ −→ ⟨∅, m(), coin⟩ −→ ⟨∅, tell(coffee) ∥ m(), 1⟩ −→ ⟨∅, m(), coffee⟩576

In order to characterize the semantics of lcc, we configure the encoding in Definition 9 as577

follows. We declare c(nil) /∈ U (i.e., constraints can be consumed) and c(∞) ∈ U . Moreover,578

the encoding is extended for the case of unbounded constraints: C[[! c]]l = C[[c]]∞. In this579

way, we obtain an adequacy theorem as the one in Theorem 10, also at the FCD level, in580

contrast to the weakest level of adequacy (FCP) obtained originally in [11] (for linear logic581

and without focusing).582

It is important to note that the characterization in Theorem 6, that uses (vanilla)583

linear logic, does not work for lcc at the FCD level. Take for instance the process Q =584

ask c ⊗ d then P being executed in the store !(c ⊗ d). Clearly, Q reduces to P and the store585

remains unchanged. If we were to use the encoding in Theorem 6, before focusing on P[[Q]],586

we have to do an intermediary step without an operational counterpart: focus on c ⊗ d,587

stored in the classical context, to produce a copy of c and d in the linear context. Only after588

that, the implication in P [[Q]] is able to entail the guard c ⊗ d. In the encoding of the present589

section, proving the query of Q results in focusing on !c(nil)c ⊗ !c(nil)d. After decomposing590

the tensor, focusing is lost and only linear c(nil) and replicated (c(∞)) constraints and the591

axioms of the constraint systems can be used to deduce the atoms c and d. This adequately592

reflects the semantics of linear asks.593
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nil

a b · · ·

a.a a.b . . .. . . b.a . . .

a.a.a . . . a.b.b . . .b.a.b. . .

. . . . . . . . .

∞

nil

a1 a2 a3

a{1,2} a{1,3} a{2,3}

∞

a{1,2,3}

Figure 3 Subexponential signature for eccp

(X; P, Γ; c) −→ (X ′; P ′, Γ; d)
(X; [P ]a, Γ; c) −→ (X ′; [P ]a, P ′, Γ; d) RE

(X; P, Γ; da) −→ (X ′; P ′, Γ; d′)
(X; [P ]a, Γ; d) −→ (X ′; [P ′]a, Γ; d ∧ sa(d′)) RS

Figure 4 Operational rules for eccp and sccp.

Epistemic CCP594

Now let us consider a richer system where different modalities will play a fundamental role.595

Epistemic CCP (eccp) [16] is a CCP-based language where systems of agents are considered596

for distributed and epistemic reasoning. In eccp, the constraint system is extended to597

consider space of agents, denoted as sa(c), and meaning “c holds in the space –store– of598

agent a.” The function sa(·) satisfies certain conditions to reflect epistemic behaviors:599

1. sa(1) = 1 (bottom preserving)600

2. sa(c ∧ d) = sa(c) ∧ sa(d) (lub preserving)601

3. If d ⊢∆e
c then sa(d) ⊢∆e

sa(c) (monotonicity)602

4. sa(c) ⊢∆e
c (believes are facts –extensiveness–)603

5. sa(sa(c)) = sa(c) (idempotence)604

In eccp, the language of processes is extended with the constructor [P ]a that represents605

P running in the space of the agent a. The operational rules for [P ]a are specified in Figure606

4. In epistemic systems, agents are trustful, i.e., if an agent a knows some information c,607

then c is necessarily true. Furthermore, if b knows that a knows c, then b also knows c. For608

example, given a hierarchy of agents as in [[P ]a]b, it should be possible to propagate the609

information produced by P in the space a to the outermost space b. This is captured exactly610

by the rule RE, which allows a process P in [P ]a to run also outside the space of agent a.611

Notice that the process P is contracted in this rule. The rule RS, on the other hand, allows612

us to observe the evolution of processes inside the space of an agent. There, the constraint da
613

represents the information the agent a may see or have of d, i.e., da =
∧

{c | d ⊢∆e
sa(c)}.614

For instance, a sees c from the store sa(c) ∧ sb(c′) but it does not see c′.615

We now configure the encoding in Definition 9 so to capture the behavior of eccp616

processes. We consider a possibly infinite set of agents A = {a1, a2, ...} and the set of617

locations/modalities M , besides nil and ∞, contains the set A+ of non-empty strings of618

elements in A; for example, if a, b ∈ A, then a, b, a.a, b.a, a.b.a, . . . ∈ A+. We use a, b, etc to619

denote elements in A+ and nil will denote the empty string. The only linear subexponentials620

are d(nil) and p(nil). This reflects the fact that both constraints and processes in the621

space of an agent are unbounded, as specified by rule RE. Intuitively, !p(1.2.3) specifies a622
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process in the structure [[[·]3]2]1, denoting “agent 1 knows that agent 2 knows that agent623

3 knows” expressions. The connective !c(1.2.3), on the other hand, specifies a constraint of624

the form s1(s2(s3(·))). We thus extend the encoding accordingly: C[[si(c)]]l = C[[c]]l.i and625

P[[[P ]i]]l = P[[P ]]l.i.626

The pre-order ⪯ is as depicted in Figure 3 on the left. Note that for every two different627

agent names a and b in A, the subexponentials a and b are unrelated. Moreover, a ≈ a.a628

and b1.b2. . . . .bn ⪯ a1.b1.a2.b2. . . . .an.bn.an+1 where each ai is a possible empty string of629

elements in A. The shape of the pre-order is key for our encoding. For instance, the formula630

⋒lx : a.b.b.P[[P ]]lx on the left, allows us to place P on the (outer) location a.b and b as631

required by RE. In fact, we can show that the sequent P [[P ]]l.i ⊢ P [[P ]]l is provable in SELL⋒
632

for any process P and subexponentials l and i. We can also show that the encoding of633

constraints satisfy the axioms of an epistemic constraint system. For instance, the sequent634

C[[si(c)]]l ⊢ C[[c]]nil is provable, showing that believes are facts. Hence, a tailored version of635

Theorem 10 applies for this language, with the same level of adequacy.636

As an interesting example of epistemic behavior, it is possible to specify common knowledge637

by extending the subexponential signature as in Figure 3 on the right, where for all S ⊆ A,638

a ⪯ aS for any string a ∈ S+. Then, the announcement of c on the group of agents S can639

be represented by !c(aS)c. Notice that the sequent !c(aS )c ⊢ !c(a)c ⊗ ⊤ can be proved for any640

a ∈ S+. For instance, if S = {ai, aj}, from !c(aS )c one can prove that ai knows that aj knows641

that ai knows that ai knows ... c, i.e., c is common knowledge between ai and aj .642

Spatial CCP643

Inconsistent information in CCP arises when considering theories containing axioms such644

as c ∧ d ⊢∆ 0. Unlike epistemic scenarios, in spatial computations, a space can be locally645

inconsistent and it does not imply the inconsistency of the other spaces (i.e., sa(0) does not646

imply sb(0)). Moreover, the information produced by a process in a space is not propagated647

to the outermost spaces (i.e., sa(sb(c)) does not imply sa(c)).648

In [16], spatial computations are specified in spatial CCP (sccp) by considering processes649

of the form [P ]a as in the epistemic case, but excluding the rule RE in the system shown in650

Figure 4. Furthermore, some additional requirements are imposed on the representation of651

agents’ spaces sa(·). In particular, sa(·) must satisfy false containment, i.e., if c ∧ d |=∆ 0, it652

does not necessarily imply that sa(c) ∧ sb(d) |=∆ 0 if a ̸= b.653

We build the subexponential signature as we did in the epistemic case but the pre-order654

is much simpler: for any a ∈ A+, a ⪯ ∞. That is, two different elements of A+ are unrelated.655

Moreover, since sccp does not contain the RE rule, processes in spaces are again treated656

linearly. Thus: U = {c(a) | a ∈ I} ∪ {p(∞)}.657

By modifying the pre-order we partially capture the behavior of spatial systems. However,658

it is not enough to confine inconsistencies. In particular, note that !a0 ⊢ G for any a and G.659

The solution for information confinement, as shown in [31], is to consider combinations of660

bangs and question marks (the dual of bang). In this case, !a?a0 ⊢ !a?aG but !a?a0 ̸⊢ !b?bG661

for a, b not related. Hence, the encoding remains the same, but for the base cases: atomic662

propositions are encoded as !c(l)?c(l)A, and procedure calls as !d(l)?d(l)p(x⃗).663

6 Conclusion and future work664

We have shown that the process-as-formula interpretation can provide useful reasoning665

techniques for process calculi, by faithfully capturing the behavior of processes. The inter-666
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General Encoding
Connective Meaning`

s = !s !sP is located at s.`
s =!s?s !s?sP is confined to s.

⋒l : a P P can move to locations below (outside) a

Epistemic Modalities
Pre-order Meaning
a.a ∼ a Modalities are idempotent: [[P ]a]a ∼ [P ]a
a ⪯ a.b Processes can move outside [[P ]b]a −→ [P ∥ [P ]b]a

Spatial Modalities
Pre-order Meaning

a ̸⪯ b P does not communicate with Q in [P ]a ∥ [Q]b
a.a ̸∼ a Modalities are not necessarily idempotent.
a ̸⪯ a.b Processes are confined: [[P ]b]a ̸∼ [P ∥ [P ]b]a

Table 1 Encoding of CCP modalities in SELL⋒

pretations we have achieved are modular and parametric, and they can capture different667

modal behaviors as Table 1 summarizes.668

Other examples of processes-as-formulas interpretations, relating computation and proof669

search, include linear logic-based models for the π-calculus [22], abstract transition systems670

and operational semantics [20], CCS [10], Bigraphs [5], P-systems [33] and concurrent object671

oriented programming languages [36]. Also, in [4] we have tailored the notion of fixed points672

in linear logic [2] to the system SELL⋒, and this allowed the encoding of CTL (Computational673

Tree Logic) formulas as SELL theories, thus opening the possibility of specifying and proving674

temporal properties inside the same logical framework.675

Regarding future work, in [17] we have shown how to incorporate other modal behaviors676

(besides the structural ones of weakening and contraction) in linear logic, thus extending677

the multiplicative and additive fragment of LL with simply dependent multi-modalities. The678

interpretations we have presented here have inspired new CCP-based calculi [35]. We foresee679

that the finer control of modalities given in [17], as well as the extensions with non-normal680

modalities [6, 18, 7], may contribute with other declarative models of concurrency with strong681

logical foundations.682
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