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Abstract1

It has been shown that linear logic can be successfully used as a framework for both specifying proof systems for2

a number of logics, as well as proving fundamental properties about the specified systems. In this paper, we show3

how to extend the framework with subexponentials in order to be able to declaratively encode a wider range of proof4

systems, including a number of non-trivial proof systems such as a multi-conclusion intuitionistic logic, classical5

modal logic S4, and intuitionistic Lax logic. Moreover, we propose methods for checking whether an encoded proof6

system has important properties, such as if it admits cut-elimination, the completeness of atomic identity rules, and7

the invertibility of its inference rules. Finally, we present a tool implementing some of these specification/verification8

methods.9

1 Introduction10

Designing suitable proof systems for specific applications has become one of the main tasks11

of many applied logicians working in computer science. Proof theory has been applied in12

different fields including programming languages, knowledge representation, automated rea-13

soning, access control, among many others. It is of utmost importance to guarantee that such14

designed proof systems have good properties, e.g. the admissibility of the cut-rule (which15

leads to other important properties such as the sub-formula property and the consistency of16

the system) as well as the completeness of atomic identity rules and the invertibility of infer-17

ence rules. It is therefore of interest to develop techniques and automated tools that can help18

logicians (and possibly non-logicians) in specifying and reasoning about proof systems.19

In the recent years, a series of papers [16, 15, 20, 25] have shown that linear logic [10]20

can be used as a framework for specifying and reasoning about proof systems. In particular,21

[25, 20] showed how to specify not only sequent calculus systems, but also natural deduction22

systems for different logics, such as minimal, intuitionistic and classical logics. Moreover,23

in [16, 15] it is shown how to check whether an encoded proof system enjoys important24

properties by simply analyzing its linear logic specification. For instance, in those works,25

sufficient conditions are provided for guaranteeing cut-elimination for specified systems.26

In our previous work [21], we proposed using linear logic with subexponentials as a frame-27

work for specifying proof systems. The motivation for this step comes from the fact that,28

since exponentials in linear logic are not canonical [18, 6], one can construct linear logic29

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–33 0000 c© Oxford University Press



2 An Extended Framework for Specifying and Reasoning about Proof Systems

proof systems containing as many subexponentials as one needs. Such subexponentials may30

or may not allow contraction and weakening. Subexponentials therefore allow for the speci-31

fication of systems with multiple contexts, which may be represented by sets or multisets of32

formulas. These features made it possible to declaratively encode a wide range of proof sys-33

tems, such as multi-conclusion proof system for intuitionistic logic. And, since the proposed34

encoding is natural and direct, we were able to use the rich linear logic meta-level theory in35

order to reason about the specified systems in an elegant and simple way.36

The contribution of this paper is three-fold. First, in Section 4, we demonstrate how to37

declaratively specify proof systems with more involved structural and logical inferences rules38

using linear logic theories with subexponentials. We encode proof systems that have struc-39

tural restrictions that are much more interesting and challenging than of the systems specified40

in [21]. Besides the multi-conclusion system for intuitionistic logic specified in our previous41

work, we specify proof systems for intuitionistic lax logic [8], focused intuitionistic logic42

LJQ∗ and classical modal logic S4. These examples provide evidence that linear logic with43

subexponentials can be successfully used as a framework for a number of proof systems for44

modal and focused logics.45

Our second contribution, in Section 5, follows and enhances the ideas presented in [16].46

We provide sufficient conditions for guaranteeing three properties for systems specified us-47

ing subexponentials: (1) the admissibility of the cut-rule; (2) the completeness of the system48

when only using atomic instances of the initial rule; and (3) for determining whether an49

inference rule is invertible. The main difference from what is presented here and the work de-50

veloped in [16] is the establishment of some criteria for permutation of rules. Such analysis is51

needed for checking whether proofs with cuts can be transformed into proofs with principal52

cuts. Since our framework enables for the encoding of much more complicated proof sys-53

tems, the behavioral analysis is more involved and it leads to more general conditions when54

compared to [16].55

Finally, we have implemented a tool, described in Section 6, that accepts a linear logic56

specification with subexponentials and automatically checks whether principals cuts can be57

reduced to atomic cuts and whether initial rules can be atomic only. Our tool is able to58

show that all the systems mentioned above satisfy these conditions. Furthermore it also can59

check cases for when the cut-rule can be permuted over an introduction rule and when an60

introduction rule can permute over another introduction rule. Such analysis can greatly help61

to discover corner cases for when the reduction of a proof with cuts into a proof with principal62

cuts only is not immediate.63

This paper is structured as follows. Section 2 introduces the proof system for linear logic64

with subexponentials, called SELLF, which is the basis of the proposed logical framework. In65

Section 3, we describe how to encode a proof system in our framework. Section 4 describes66

the encoding of a number of proof systems, namely, the proof system G1m for minimal67

logic [27], multi-conclusion proof system for intuitionistic logic mLJ [13], the focused proof68

system LJQ∗ for intuitionistic logic [7], a proof system for classical modal logic S4, and a69

proof system for intuitionistic lax logic [8]. Section 5 introduces the conditions for verifying70

whether an encoded proof system satisfies the properties mentioned before, which can be71

checked using our tool described in Section 6. Finally, in Sections 7 and 8, we end by72

discussing related and future work.73

This is an improved and expanded version of the workshop paper [21].74
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2 Linear Logic with Subexponentials75

Although we assume that the reader is familiar with linear logic, we review some of its basic76

proof theory. Literals are either atomic formulas (A) or their negations (A⊥). The connectives77

⊗ and O and their units 1 and ⊥ are multiplicative; the connectives ⊕ and & and their units 078

and > are additive; ∀ and ∃ are (first-order) quantifiers; and ! and ? are the exponentials. We79

shall assume that all formulas are in negation normal form, meaning that all negations have80

atomic scope.81

Due to the exponentials, one can distinguish in linear logic two kinds of formulas: the82

linear ones whose main connective is not a ? and the unbounded ones whose main connective83

is a ?. The linear formulas can be seen as resources that can only be used once, while the un-84

bounded formulas represent unlimited resources that can be used as many times as necessary.85

This distinction is usually reflected in syntax by using two different contexts in linear logic86

sequents (` Θ : Γ), one (Θ) containing only unbounded formulas and another (Γ) with only87

linear formulas [1]. Such distinction allows to incorporate structural rules, i.e., weakening88

and contraction, into the introduction rules of connectives, as done in similar presentations89

for classical logic, e.g., the G3c system in [27]. In such presentation, the context (Θ) contain-90

ing unbounded formulas is treated as a set of formulas, while the other context (Γ) containing91

only linear formulas is treated as a multiset of formulas.92

It turns out that the exponentials are not canonical [6] with respect to the logical equiva-93

lence relation. In fact, if, for any reason, we decide to define a blue and red conjunctions (∧b
94

and ∧r respectively) with the standard classical rules:95

Γ, A, B ` ∆
Γ, A ∧b B ` ∆ [∧bL]

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧b B

[∧bR]

Γ, A, B ` ∆
Γ, A ∧r B ` ∆ [∧rL]

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧r B

[∧rR]

then it is easy to show that, for any formulas A and B, A ∧b B ≡ A ∧r B. This means that
all the symbols for classical conjunction belong to the same equivalence class. Hence, we
can choose to use as the conjunction’s canonical form any particular color, and provability is
not affected by this choice. However, the same behavior does not hold with the linear logic
exponentials. In fact, suppose we have red !r, ?r and blue !b, ?b sets of exponentials with the
standard linear logic rules:

` ?rΓ, F
` ?rΓ, !r F

[!r]
` Γ, F
` Γ, ?rF

[D?r]
` ?bΓ, F
` ?bΓ, !b F

[!b]
` Γ, F
` Γ, ?bF

[D?b]

We cannot show that !r F ≡ !b F nor ?rF ≡ ?bF. This opens the possibility of defining96

classes of exponentials, called subexponentials [19]. In this way, it is possible to build proof97

systems containing as many exponential-like operators, (!l , ?l) as one needs: they may or98

may not allow contraction and weakening, and are organized in a pre-order (�) specifying99

the entailment relation between these operators. Formally, a proof system for linear logic100

with subexponentials, called SELLΣ, is specified by a subexponential signature, Σ, of the101

form 〈I,�,U〉, where I is the set of labels for subexponentials, � is a preorder relation1
102

among the elements of I, andU ⊆ I, specifying which subexponentials allow for weakening103

1A preorder relation is a binary relation that is reflexive and transitive.
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and contraction. The preorder � is also assumed to be upwardly closed with respect to the set104

U, that is, if x ≺ y and x ∈ U, then y ∈ U.2105

For a given a subexponential signature Σ, the proof system SELLΣ contains the same in-106

troduction rules as in linear logic for all connectives, except the exponentials. These are107

specified, on the other hand, by the subexponential signature, Σ, as follows:3108

` C,∆
` ?xC,∆

[D, if x ∈ I]
` ?yC, ?yC,∆
` ?yC,∆

[C, if y ∈ U] ` ∆
` ?zC,∆

[W, if z ∈ U]

The first rule, called dereliction, can be applied to any subexponential, and contraction and109

weakening only to subexponentials that appear in the setU. The promotion rule is given by110

the following inference rule:111

` ?x1C1, . . . , ?xnCn,C
` ?x1C1, . . . , ?xnCn, !aC

[!a]

where a � xi for all i = 1, . . . , n. The promotion rule will play an important role here,112

namely, to specify the structural restrictions of encoded proof systems. In particular, one can113

use a subexponential bang, !c , to check whether there are only some type of formulas in the114

context, namely, those that are marked with subexponentials, ?x , such that c � x. If there is115

any formula ?yF in the context such that c � y, then !c cannot be introduced.116

We classify all the subexponential indexes belonging to U as unrestricted or unbounded,117

and the remaining indexes as restricted or bounded.118

Danos et al. showed in [6] that SELL admits cut-elimination.119

Theorem 2.1
For any signature Σ, the cut-rule is admissible in SELLΣ.120

2.1 Focusing121

First proposed by Andreoli [1] for linear logic, focused proof systems provide the normal122

form proofs for cut-free proofs. In this section, we review the focused proof system for123

SELL, called SELLF, proposed in [19].124

In order to explain SELLF, we first recall some more terminology. We classify as positive125

the formulas whose main connective is either ⊗,⊕,∃, the subexponential bang, the unit 1 and126

positive literals. All other formulas are classified as negative. Figure 1 contains the focused127

proof system SELLF that is a rather straightforward generalization of Andreoli’s original128

system. There are two kinds of arrows in this proof system. Sequents with the ⇓ belong to the129

positive phase and introduce the logical connective of the “focused” formula (the one to the130

right of the arrow): building proofs of such sequents may require non-invertible proof steps131

to be taken. Sequents with the ⇑ belong to the negative phase and decompose the formulas on132

their right in such a way that only invertible inference rules are applied. The structural rules133

D1,Dl,R ⇑, and R ⇓ make the transition between a negative and a positive phase.134

Similarly as in the usual presentation of linear logic, there is a pair of contexts to the left of135

⇑ and ⇓ of sequents, written here asK : Γ. The second context, Γ, collects the formulas whose136

main connective is not a question-mark, behaving as the bounded context in linear logic. But137

differently from linear logic, where the first context is a multiset of formulas whose main138

2This last condition on the pre-order is necessary to prove that SELLΣ admits cut-elimination see [6].
3Whenever it is clear from the context, we will elide the subexponential signature Σ.
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connective is a question-mark, we generalizeK to be an indexed context, which is a mapping139

from each index in the set I (for some given and fixed subexponential signature) to a finite140

multiset of formulas, in order to accommodate for more than one subexponential in SELLF.141

In Andreoli’s focused system for linear logic, the index set contains a single subexponential,142

∞, and K[∞] contains the set of unbounded formulas. Figure 2 contains different operations143

used in such indexed contexts. For example, the operation (K1 ⊗K2), used in the tensor rule,144

specifies the resulting indexed context obtained by merging two contexts K1 and K2.145

Focusing allows the composition of a collection of inference rules of the same polarity into146

a “macro-rule.” Consider, for example, the formula N1 ⊕ N2 ⊕ N3, where all N1,N2, and N3147

are negative formulas. Once focused on, the only way to introduce such a formula is by using148

a “macro-rule” of the form:149

` K : Γ ⇑ Ni

` K : Γ ⇓ N1 ⊕ N2 ⊕ N3

where i ∈ {1, 2, 3}. In this paper, we will encode proof systems in SELLF in such a way that150

the “macro-rules” available using our specifications match exactly the inference rules of the151

encoded system.152

This paper will make great use of the promotion rule, !l , in order to specify the structural153

restrictions of a proof system. In particular, this rule determines two different operations154

when seen from the conclusion to premise. The first one arises by its side condition: a bang155

can be introduced only if the linear contexts that are not greater to l are all empty. This156

operation is similar to the promotion rule in plain linear logic: a bang can be introduced only157

if the linear context is empty. The second operation is specified by using the operation K ≤l:158

in the premise of the promotion rule all unbounded contexts that are not greater than l are159

erased. Notice that such operation is not available in plain linear logic.160

Nigam in [18] proved that SELLF is sound and complete with respect to SELL.161

Theorem 2.2
For any subexponential signature Σ, SELLFΣ is sound and complete with respect to SELLΣ.162

Finally, to improve readability, we will often show explicitly the formulas appearing in the163

image of the indexed context, K , of a sequent. For example, if the set of subexponential164

indexes is {x1, . . . , xn}, then the following negative sequent165

` Θ1
:
x1 Θ2

:
x2 · · ·Θn

:
xn Γ ⇑ L

denotes the SELLF sequent ` K : Γ ⇑ L, such thatK[xi] = Θi for all 1 ≤ i ≤ n. We will also166

assume the existence of a maximal unbounded subexponential called ∞, which is greater than167

all other subexponentials. This subexponential is used to mark the linear logic specification168

of proof systems explained in the next section.169

3 Encoding Proof Systems in SELLF170

3.1 Encoding Sequents171

Similar as in Church’s simple type theory [4], we assume that linear logic propositions have172

type o and that the object-logic quantifiers have type (term → form) → form, where term173

and form are respectively the types for an object-logic term and for object-logic formulas.174

Moreover, following [24, 25, 20], we encode a sequent in SELLF by using two meta-level175

atoms b·c and d·e of type form → o. These meta-level atoms are used to mark, respec-176
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` K : Γ ⇑ L, A ` K : Γ ⇑ L, B
` K : Γ ⇑ L, ANB

[N]
` K : Γ ⇑ L, A, B
` K : Γ ⇑ L, AOB

[O] ` K : Γ ⇑ L,> [>]

` K : Γ ⇑ L
` K : Γ ⇑ L,⊥ [⊥]

` K : Γ ⇑ L, A{c/x}
` K : Γ ⇑ L,∀x.A

[∀]
` K +l A : Γ ⇑ L
` K : Γ ⇑ L, ?lA

[?l]

` K : Γ ⇓ Ai

` K : Γ ⇓ A1 ⊕ A2
[⊕i]

` K1 : Γ ⇓ A ` K2 : ∆ ⇓ B
` K1 ⊗ K2 : Γ,∆ ⇓ A ⊗ B

[⊗, given (K1 = K2)|U]

` K : · ⇓ 1
[1, given K[I \ U] = ∅] ` K : Γ ⇓ A{t/x}

` K : Γ ⇓ ∃x.A
[∃]

` K ≤l: · ⇑ A
` K : · ⇓!lA

[!l, given K[{x | l � x ∧ x < U}] = ∅]

` K : Γ ⇓ A⊥t
[I, given At ∈ (Γ ∪ K[I) and (Γ ∪ K[I \ U]) ⊆ {At}]

` K +l P : Γ ⇓ P
` K +l P : Γ ⇑ · [Dl, given l ∈ U]

` K : Γ ⇓ P
` K +l P : Γ ⇑ · [Dl, given l < U]

` K : Γ ⇓ P
` K : Γ, P ⇑ · [D1]

` K : Γ ⇑ N
` K : Γ ⇓ N

[R ⇓] ` K : Γ, S ⇑ L
` K : Γ ⇑ L, S

[R ⇑]

Fig. 1: Focused linear logic system with subexponentials. We assume that all atoms are clas-
sified as negative polarity formulas and their negations as positive polarity formulas. Here, L
is a list of formulas, Γ is a multi-set of formulas and positive literals, At is an atomic formula,
P is a non-negative literal, S is a positive literal or formula and N is a negative formula.

• (K1 ⊗ K2)[i] =
{
K1[i] ∪ K2[i] if i < U
K1[i] if i ∈ U • K[S] =

⋃{K[i] | i ∈ S}

• (K +l A)[i] =
{
K[i] ∪ {A} if i = l
K[i] otherwise • K ≤i [l] =

{
K[l] if i � l
∅ if i � l

• (K1 ?K2) |S is true if and only if (K1[j] ?K2[j])

Fig. 2: Specification of operations on contexts. Here, i ∈ I, j ∈ S, S ⊆ I, and the binary
connective ? ∈ {=,⊂,⊆}.

tively, formulas appearing on the left and on the right of sequents. For example, the formu-177

las appearing in the sequent B1, . . . , Bn ` C1, . . . ,Cm are specified by the meta-level atoms:178

bB1c, · · · , bBnc, dC1e, · · · , dCme.179

Given such a collection of meta-level atoms, it remains to decide where exactly these atoms180

are going to appear in the meta-level sequents. When using linear logic without subexponen-181

tials, the number of possibilities is quite limited. As the sequents of linear logic without182

subexponentials (` Θ : Γ) have only two contexts, namely an unbounded context (Θ) (which183

is treated as a set of formulas) and a bounded context (Γ) (which is treated as a multiset of for-184

mulas), there are only two options: the meta-level formula either belongs to one context or to185

the other. The use of subexponentials opens, on the other hand, a wider range of possibilities,186
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as there is one context for each subexponential index. For instance, we can encode the object-187

level sequent above by using two subexponentials: l whose context stores b·c formulas and r188

whose context stores d·e formulas. The meta-level encoding of an object-level sequent would189

in this case have the following form4 ` L :∞ bB1c, · · · , bBnc :l dC1e, · · · , dCme :r · ⇑ ·. More-190

over, if needed, one could further refine such specification and partition meta-level atoms in191

more contexts by using more subexponentials. For instance, the focused sequent of focused192

proof systems, such as LJQ∗, has an extra context, called stoup, where the focused formula193

is. To specify such a sequent, we use an additional subexponential index f , whose context194

contains the focused formula. As we show in the next subsection, when we describe how195

inference rules are specified, this refinement of linear logic sequents enables the specification196

of a number of structural properties of proof systems in an elegant fashion.197

Moreover, in SELLF, subexponential contexts can be configured so to behave as sets or198

multisets. For instance, if we use the subexponentials signature 〈{l, r,∞},�, {l,∞}〉, with some199

preorder �, the contexts for l and ∞ are treated as sets, while the context for r is treated as a200

multiset. Such situation would be useful for any proof system where the right-hand-side of its201

sequent behaves as a multiset of formulas and the left-hand-side behaves as a set of formulas,202

e.g., the system LJ for intuitionistic logic. We could, alternatively, specify the contexts for203

both l and r to behave as multisets. In this case, l and r are bounded subexponentials. Such204

a specification is used when both sides of the object-level sequent behave as multisets, such205

as for the system G1m [27] for minimal logic, which has explicit weakening and contraction206

rules.207

3.2 Encoding Inference Rules208

Inference rules of a system are specified using monopoles and bipoles [16]. These concepts209

are generalized next.210

Definition 3.1
A monopole formula is a SELLF formula that is built up from atoms and occurrences of211

the negative connectives, with the restriction that, for any label t, ?t has atomic scope and212

that all atomic formulas, A, are necessarily under the scope of a subexponential question-213

mark, ?tA. A bipole is a formula built from monopoles and negated atoms using only positive214

connectives, with the additional restriction that !s, s ∈ I, can only be applied to a monopole.215

We shall also insist that a bipole is either a negated atom or has a top-level positive connective.216

The last restriction on bipoles forces them to be different from monopoles: bipoles are217

always positive formulas. Using the linear logic distributive properties, monopoles are equiv-218

alent to formulas of the form219

∀x1 . . .∀xp[&i=1,...,n O j=1,...,mi ?ti,j Ai, j],

where Ai, j is an atomic formula and ti, j ∈ I. Similarly, bipoles can be rewritten as formulas of220

the form221

∃x1 . . .∃xp[⊕i=1,...,n ⊗ j=1,...,mi Ci, j],

where Ci, j are either negated atoms, monopole formulas, or the result of applying !s to a222

monopole formula to some s ∈ I.223

Throughout this paper, the following invariant holds: the linear context to the left of the224

⇑ and ⇓ on SELLF sequents is empty5. This invariant derives from the focusing discipline225

4L is a theory specifying the proof system’s introduction rules, which will be explained later.
5That is, the context Γ in ` K : Γ ⇑ · and in ` K : Γ ⇓ F is empty.
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and from the definition of bipoles above, namely, from the fact that all atomic formulas are226

under the scope of a ?t. This is illustrated by the derivation below. In particular, according to227

the focusing discipline, a bipole is necessarily introduced by such a derivation containing a228

single alternation of phases. We call these derivations bipole-derivations.229

· · ·

· · ·

` K ′i : · ⇑ ·

` Ki <s: · ⇑O j=1,...,mi ?ti,j Ai, j
[mi × (O, ?t)]

· · ·

` Ki <s: · ⇑ ∀x1 . . .∀xp[&i=1,...,n O j=1,...,mi ?ti,j Ai, j]
[p × ∀, n ×&]

` Ki : · ⇓ !s∀x1 . . .∀xp[&i=1,...,n O j=1,...,mi ?li,j Ai, j]
[!s]

· · ·
` K ′ : · ⇓ ∃x1 . . .∃xt[⊕i=1,...,k ⊗ j=1,...,qi Ci, j]

[t × ∃, k × ⊕, qi × ⊗]

` K : · ⇑ ·

Notice that the derivation above contains a single positive and a single negative trunk. More-230

over, if the connective !s is not present, then the rule !s is replaced by the rule R ⇓.231

It turns out that one can match exactly the shape of a bipole-derivation with the shape232

of the inference rule the bipole encodes. Consider, for example, the following bipole F =233

∃A∃B.[bA ⊃ Bc⊥ ⊗ (!l?rdAe ⊗ ?lbBc)] encoding the ⊃ left-introduction rule for intuitionistic234

logic, assuming the signature 〈{l, r,∞}, {l ≺ ∞, r ≺ ∞}, {l,∞}〉. The only way to introduce F in235

SELLF is by using a bipole-derivation of the following form, where F ∈ Θ:236

` Θ :∞ bΓc, bA ⊃ Bc :
l dAe :

r · ⇑ · ` Θ :∞ bΓc, bA ⊃ Bc, bBc :
l dGe :

r · ⇑ ·
` Θ :∞ bΓc, bA ⊃ Bc :

l dGe :
r · ⇓ F

` Θ :∞ bΓc, bA ⊃ Bc :
l dGe :

r · ⇑ ·

The bipole-derivation above corresponds exactly to the left implication introduction rule for237

intuitionistic logic with premises Γ, A ⊃ B −→ A and Γ, A ⊃ B, B −→ G, and conclusion238

Γ, A ⊃ B −→ G. Nigam and Miller in [20] classify this adequacy as on the level of deriva-239

tions. Notice the role of !l in the derivation above. In order to introduce it, it must be the case240

that the context of subexponential r is empty. That is, the formula dGe is necessarily moved241

to the right branch. All the proof systems that we encode in this paper (in Section 4) have this242

level of adequacy.243

Subexponentials greatly increase the expressiveness of the framework allowing a number244

of structural properties of rules to be expressed. One can, e.g., specify rules where (1) for-245

mulas in one or more contexts must be erased in the premise as well as rules that (2) require246

the presence of some formula in the context. We informally illustrate these applications of247

subexponentials.248

For the first type of structural restriction, consider the following inference rule of the multi-249

conclusion system for intuitionistic logic:250

Γ, A −→ B
Γ −→ ∆, A ⊃ B

[⊃R]

Here, the set of formulas ∆ has to be erased in the premise. This inference rule can be251

specified as the bipole F = ∃A∃B.dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe), using the subexponential252

signature 〈{l, r,∞}, {l ≺ ∞, r ≺ ∞}, {l, r,∞}〉 where all contexts behave like sets. A bipole-253

derivation introducing this formula has necessarily the following shape, where F ∈ Θ:254



An Extended Framework for Specifying and Reasoning about Proof Systems 9

` Θ :∞ bΓc :
l d∆, A ⊃ Be :

r · ⇓ dA ⊃ Be⊥
[I]

` Θ :∞ bΓ, Ac :
l dBe :

r · ⇑
` Θ :∞ bΓc :

l · :
r · ⇑ ?lbAc O ?rdBe)

[O, ?r , ?l]
` Θ :∞ bΓc :

l d∆, A ⊃ Be :
r · ⇓ !l(?lbAc O ?rdBe)

[!l]

` Θ :∞ bΓc :
l d∆, A ⊃ Be :

r · ⇓ dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
[⊗]

` Θ :∞ bΓc :
l d∆, A ⊃ Be :

r · ⇑
[D∞, 2 × ∃]

Notice the role of the !l in the derivation above. It specifies that all formulas in the context of255

the subexponential r, i.e., the formulas d∆, A ⊃ Be, should be weakened, hence corresponding256

exactly to the ⊃R rule above.257

In the example above, we showed how to specify systems where a single context should be258

erased. It is possible to generalize this idea to erasing any number of contexts: as before, this259

is done by specifying the pre-order � accordingly.260

In some cases, however, we may also make use of logical equivalences and “dummy”261

indexes whose contexts will not store any formulas, but are just used to specify the structural262

restrictions of inference rules. For example, in the following rule of modal logic, the contexts263

Γ′ and ∆′ are both erased264

�Γ ` A, �∆
�Γ,Γ′ ` �A, �∆,∆′ [�R]

In order to specify this rule, we use the following set of subexponential indexes {l, r,�l, �r, e,∞},265

where all indexes are unbounded. The contexts for l and r store formulas in the left and266

right-hand side, while the context for �l and �r store formulas whose main connective is a di-267

amond and box on the left and on the right-hand side, respectively. For instance, the sequent268

�Γ, Γ′, �Γ′′ ` �∆,∆′, �∆′′ is encoded as ` Θ :∞ b�Γc :
�l bΓ′, �Γ′′c

:
l d�∆,∆′e :

r d�∆′′e :�r · ⇑ ·,269

where Θ is the theory specifying the inference rules of the system. The following clauses,270

classified as structural clauses (see Definition 3.2), specify the relation among object-logic271

formulas whose main connective is a � and a � and the context of the indexes �l and �r.272

(�S ) b�Ac⊥ ⊗ ?�l b�Ac and (�S ) d�Ae⊥ ⊗ ?�r d�Ae

From these clauses we obtain the equivalences6 ∀A.b�Ac ≡ ?�l b�Ac and ∀A.d�Ae ≡ ?�r d�Ae.273

That is, any formula of the form b�Ac can be placed in the context of �l and any formula of274

the form d�Ae to the context of �r. Furthermore, we specify e as follows: e ≺ �l, e ≺ �r,275

and e ≺ ∞ and e is unrelated to the remaining subexponentials. Hence, the connective !e can276

play a similar role for the specification of the rule �R as the !l in the specification of the ⊃R277

rule above. In particular, to introduce !e , all contexts but �l, �r and ∞ have to be erased. It is278

easy to check that this operation is exactly the one needed for specifying the modal logic rule279

above. In Section 4, we show this specification in detail.280

In combination to the use of bounded subexponentials, whose contexts behave as multi-281

sets, subexponentials can also be used to check whether a formula is present in the sequent.282

These type of requirement also often appears in inference rules, such as the one below for283

intuitionistic lax logic [8]:284

F,Γ −→ ©G
©F,Γ −→ ©G

[©L]

6F ≡ G denotes the formula (F O G⊥) ⊗ (F⊥ O G).
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The connective © on the left can be introduced only if the main connective of the formula285

on the right is also a ©. To specify this rule, we use the following subexponentials indexes:286

{l, r, ◦r,∞}, where l and ∞ are unrestricted, while r and ◦r are restricted. Moreover, r ≺ ◦r,287

◦r ≺ l, and ◦r, l ≺ ∞. Similarly as in the modal logic example above, a formula dHe is stored288

in the context of the subexponential ◦r only if H’s main connective is ©, i.e., H = ©H′289

for some H′. This is also accomplished by using an analogous logical equivalence, namely,290

∀A.d©Ae ≡ ?◦r d©Ae, which is obtained by using the clause (©S ) in Figure 12. It is then easy291

to check that the formula ∃F.b©Fc⊥ ⊗ !◦r bFc specifies the rule above. In particular, the !◦r is292

used to check whether the formula on the right has © as main connective: if this is the case,293

then some formula of the form d©Ge will be in the context ◦r, while the context for r will be294

empty. Notice, that this specification does not mention any side-formulas of the sequent, not295

even the formula appearing on the right-hand-side of the sequent. As we argue later, the use296

of such declarative specifications will help us reason about proof systems.297

3.3 Canonical Proof System Theories298

The definition below classifies clauses into three different categories, namely the identity rules299

(Cut and Init rules), introduction rules, and structural rules, following usual terminology in300

proof theory literature [27].301

Definition 3.2
i. In its most general form, the clause specifying the cut rule has the form to the left, while302

the clause specifying the initial rule has the form to the right:303

Cut = ∃A.!a?bbAc ⊗ !c?ddAe and Init = ∃A.bAc⊥ ⊗ dAe⊥

where a, c are subexponentials that may or may not appear, depending on the structural304

restrictions imposed by the proof system.305

ii. The structural rules are specified by clauses of the form below, where i, j ∈ I:306

∃A.[bAc⊥ ⊗ (?ibAc O · · · O ?ibAc)] or ∃A.[dAe⊥ ⊗ (?jdAe O · · · O ?jdAe)].

iii. Finally, an introduction clause is a closed bipole formula of the form307

∃x1 . . .∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ B]

where � is an object-level connective of arity n (n ≥ 0) and q ∈ {b·c, d·e}. Furthermore, B308

does not contain negated atoms and an atom occurring in B is either of the form p(xi) or309

p(xi(y)) where p ∈ {b·c, d·e} and 1 ≤ i ≤ n. In the first case, xi has type obj while in the310

second case xi has type d → obj and y is a variable (of type d) quantified (universally or311

existentially) in B (in particular, y is not in {x1, . . . , xn}).312

In the remainder of this paper, we restrict our discussion to the so called canonical sys-313

tems [2].314

Definition 3.3
A canonical clause is an introduction clause restricted so that, for every pair of atoms of the315

form bT c and dS e in a body, the head variable of T differs from the head variable of S . A316

canonical proof system theory is a set X of formulas such that (i) the Init and Cut clauses are317

members of X; (ii) structural clauses may be members of X; and (iii) all other clauses in X318

are canonical introduction clauses.319
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Γ1 −→ A Γ2, B −→ C
Γ1,Γ2, A ⊃ B −→ C

[⊃ L]
Γ, A −→ B
Γ −→ A ⊃ B

[⊃ R]
Γ, A, B −→ C
Γ, A ∧ B −→ C

[∧L]

Γ1 −→ A Γ2 −→ B
Γ1,Γ2 −→ A ∧ B

[∧R]
Γ, A{t/x} −→ C
Γ,∀x A −→ C

[∀L]
Γ −→ A{c/x}
Γ −→ ∀x A

[∀R]

Γ, A{c/x} −→ C
Γ,∃x A −→ C

[∃L]
Γ −→ A{t/x}
Γ −→ ∃x A

[∃R]
Γ, A −→ C Γ, B −→ C
Γ, A ∨ B −→ C

[∨L]

Γ −→ Ai

Γ −→ A1 ∨ A2
[∨iR] Γ −→ C

Γ, A −→ C
[WL]

Γ, A, A −→ C
Γ, A −→ C

[CL]

A −→ A [Init]
Γ1 −→ A Γ2, A −→ C

Γ1,Γ2 −→ C
[Cut]

Fig. 3. The sequent calculus system G1m for minimal logic.

(⊃L) bA ⊃ Bc⊥ ⊗ (!l?rdAe ⊗ ?lbBc) (⊃R) dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
(∧L) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (!l?rdAe ⊗ !l?rdBe)
(∨L) bA ∨ Bc⊥ ⊗ (?lbAc& ?lbBc) (∨R) dA ∨ Be⊥ ⊗ (!l?rdAe ⊕ !l?rdBe)
(∀L) b∀Bc⊥ ⊗ ?lbBxc (∀R) d∀Be⊥ ⊗ !l∀x?rdBxe
(∃L) b∃Bc⊥ ⊗ ∀x?lbBxc (∃R) d∃Be⊥ ⊗ !l?rdBxe
(Init) bBc⊥ ⊗ dBe⊥ (Cut) !l?rdBe ⊗ ?lbBc
(CL) bBc⊥ ⊗ (?lbBc O ?lbBc) (WL) bBc⊥ ⊗ ⊥

Fig. 4. The theory, LG1m, for G1m.

4 Examples of Proof Systems encoded in SELLF320

This section contains the specification of a number of proof systems that do not seem possible321

to be encoded in linear logic without the use of subexponentials or without mentioning side-322

formulas explicitly. In our specifications, we assume all free variables to be existentially323

quantified. Moreover, all the encodings below have the strongest level of adequacy, namely324

adequacy on the level of derivations [20].325

4.1 G1m326

The system G1m (Figure 3) for minimal logic contains explicit rules for weakening and con-327

traction of formulas appearing on the left-hand-side of sequents. The encoding of this system328

illustrates how to use subexponentials to specify proof systems whose sequents contain two329

or more linear contexts. Here, in particular, both the left and the right-hand-side of G1m330

sequents are treated as multisets of formulas.331

We specify G1m by using the following subexponential signature: 〈{∞, l, r}, {r ≺ l ≺332

∞}, {∞}〉. The subexponentials l and r do not allow neither contraction nor weakening. Their333

contexts will store, respectively, object-logic formulas appearing on the left and on the right334

of the sequent. Moreover, we use the theory LG1m, depicted in Figure 4, in order to specify335

in SELLF the G1m’s introduction rules. This theory is, on the other hand, stored in the336

context of ∞. Thus, a G1m sequent of the form Γ ` C is encoded as the SELLF sequent337

` LG1m
:∞ bΓc :

l dCe :
r · ⇑ ·.338

Each clause in LG1m corresponds to one introduction rule of G1m. To obtain such strong339

correspondence, we need to capture precisely the structural restrictions in the system. In340
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particular, the use of the !l in the clauses (⊃L), specifying the rule ⊃L, and (Cut), specifying341

Cut rules, is necessary. It forces that the side-formula, C, appearing in the right-hand-side342

of their conclusion is moved to the correct premise. This is illustrated by the following343

derivation:344

` LG1m
:∞ bΓ1c

:
l dAe :

r · ⇑
` LG1m

:∞ bΓ1c
:
l · :

r · ⇓ !l?rdAe
[!l , ?r ]

` LG1m
:∞ bΓ2, Ac

:
l dCe :

r · ⇑
` LG1m

:∞ bΓ2c
:
l dCe :

r · ⇓ ?lbAc
[R⇓, ?l]

` LG1m
:∞ bΓ1,Γ2c

:
l dCe :

r · ⇓ !l?rdAe ⊗ ?lbAc
[⊗]

` LG1m
:∞ bΓ1,Γ2c

:
l dCe :

r · ⇑
[D∞,∃]

When introducing the tensor, the formula dCe cannot go to the left branch because, in that345

case, the r context would not be empty and therefore the !l could not be introduced. Hence,346

the only way to introduce the formula (Cut) in LG1m is with a derivation as the one above.347

In contrast, it is not possible to encode G1m in linear logic (without subexponentials) with348

such a strong correspondence. The sequents of the dyadic version of linear logic [1] have only349

two contexts, one for the unbounded formulas and another for the linear formulas. Hence,350

in linear logic, all linear meta-level atoms would appear in the same context illustrated by351

the sequent ` Θ : bΓc, dCe. Furthermore, using the linear logic ! enforces that not only dCe,352

but all linear formulas in this sequent, namely bΓc and dCe, are moved to a different branch.353

Therefore, one cannot capture, as done by using the subexponential bang !l, that only dCe is354

necessarily moved to a different branch as specified in the G1m rules ⊃L and Cut.355

Finally, as the derivation above illustrates, the !ls appearing in the specification of G1m’s356

introduction rules specify the structural restriction that G1m’s sequents contain exactly one357

formula on their right-hand-side. This allows us to specify these introduction rules without358

explicitly mentioning any side-formulas in the sequent, such as, the formula C in the Cut rule.359

As we show in Section 5, the use of such declarative specifications allow for simple proofs360

about the object-level systems, such as the proof that it admits cut-elimination.361

Repeating this exercise for each inference rule, we establish the following adequacy result.362

Proposition 4.1
Let Γ∪{C} be a set of object logic formulas, and let the subexponentials, l and r, be specified363

by the signature 〈{∞, l, r}, {r ≺ l ≺ ∞}, {∞}〉. Then the sequent ` LG1m
:∞ bΓc :

l dCe :
r · ⇑ is364

provable in SELLF if and only if the sequent Γ −→ C is provable in G1m.365

4.2 mLJ366

We now encode in SELLF the multi-conclusion sequent calculus mLJ for intuitionistic logic367

depicted in Figure 5. Its encoding illustrates the use of subexponentials to specify rules368

requiring some formulas to be weakened. In particular, the mLJ’s rules ⊃R and ∀R require369

that the formulas ∆ appearing in their conclusions to be weakened in their premises.370

Formally, the theory Lmlj is formed by the clauses shown in Figure 6 This theory specifies371

mLJ’s rules by using the subexponential signature 〈{∞, l, r}; {l ≺ ∞, r ≺ ∞}; {∞, l, r}〉. As372

before with the encoding of G1m, we make use of two subexponentials l and r to store,373

respectively, meta-level atoms b·c and d·e, but now we allow both contraction and weakening374

to these subexponential indexes. As described in Section 3.2, the use of !l in the clauses (⊃R)375

and (∀R) specifies that the formulas in the context r should be necessarily weakened. This is376
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Γ, A ⊃ B −→ A,∆ Γ, A ⊃ B, B −→ ∆
Γ, A ⊃ B −→ ∆ [⊃L]

Γ, A −→ B
Γ −→ A ⊃ B,∆

[⊃R]

Γ, A ∧ B, A, B −→ ∆
Γ, A ∧ B −→ ∆ [∧L]

Γ −→ A ∧ B, A,∆ Γ −→ A ∧ B, B,∆
Γ −→ A ∧ B,∆

[∧R]

Γ, A ∨ B, A,−→ ∆ Γ, A ∨ B, B −→ ∆
Γ, A ∨ B −→ ∆ [∨L]

Γ −→ A ∨ B, A, B,∆
Γ −→ A ∨ B,∆

[∨R]

Γ,∀x A, A{t/x} −→ ∆
Γ,∀x A −→ ∆ [∀L]

Γ −→ A{c/x}
Γ −→ ∆,∀x A

[∀R]

Γ,∃x A, A{c/x} −→ ∆
Γ,∃x A −→ ∆ [∃L]

Γ −→ ∆,∃x A, A{t/x}
Γ −→ ∆,∃x A

[∃R]

Γ, A −→ A,∆
[Init]

Γ −→ B,∆ Γ, B −→ ∆
Γ −→ ∆ [Cut]

Γ,⊥ −→ ∆ [⊥L]

Fig. 5. The multi-conclusion intuitionistic sequent calculus, mLJ, with additive rules.
(⊃L) bA ⊃ Bc⊥ ⊗ (?rdAe ⊗ ?lbBc) (⊃R) dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
(∧L) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (?rdAe ⊗ ?rdBe)
(∨L) bA ∨ Bc⊥ ⊗ (?lbAc ⊗ ?lbBc) (∨R) dA ∨ Be⊥ ⊗ (?rdAe O ?rdBe)
(∀L) b∀Bc⊥ ⊗ ?lbBxc (∀R) d∀Be⊥ ⊗ !l∀x?rdBxe
(∃L) b∃Bc⊥ ⊗ ∀x?lbBxc (∃R) d∃Be⊥ ⊗ ?rdBxe
(⊥L) b⊥c⊥
(Init) bBc⊥ ⊗ dBe⊥ (Cut) ?lbBc ⊗ ?rdBe
(Pos) bBc⊥ ⊗ ?lbBc (Neg) dBe⊥ ⊗ ?rdBe

Fig. 6. Theory Lmlj for the multi-conclusion intuitionistic logic system mLJ.

illustrated by the following derivation introducing the formula (∀R) in Lmlj:377

` Lmlj
:∞ bΓc :

l d∆,∀x Ae :
r · ⇓ d∀x Ae⊥

[IR]

` Lmlj
:∞ bΓc :

l dAce :
r · ⇑

` Lmlj
:∞ bΓc :

l · :
r · ⇑ ∀x?rdAxe

[∀, ?r ]

` Lmlj
:∞ bΓc :

l d∆,∀x Ae :
r · ⇓ !l∀x?rdAxe

[!l]

` Lmlj
:∞ bΓc :

l d∆,∀x Ae :
r · ⇓ d∀Ae⊥ ⊗ !l∀x?rdAxe

[⊗]

` Lmlj
:∞ bΓc :

l d∆,∀x Ae :
r · ⇑

[D∞,∃]

Since l � r, all formulas in the context r should be weakened in the premise of the promotion378

rule. The derivation above also illustrates how one can specify fresh values with the use of379

the universal quantifier. As in mLJ, the eigenvariable c cannot appear in ∆ nor Γ.380

The following result is proved by induction on the height of focused proofs.381

Proposition 4.2
Let Γ ∪ ∆ be a set of object-logic formulas, and let the subexponentials l and r be specified382

by the signature 〈{∞, l, r}; {l ≺ ∞, r ≺ ∞}; {∞, l, r}}〉. Then the sequent ` Lmlj
:∞ bΓc :

l d∆e :
r · ⇑383

is provable in SELLF if and only if the sequent Γ −→ ∆ is provable in mLJ.384
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Γ, A ⊃ B→ A; · Γ, A ⊃ B, B ` ∆
Γ, A ⊃ B ` ∆ [⊃L]

Γ, A ` B
Γ→ A ⊃ B;∆

[⊃R]

Γ, A ∨ B, A ` ∆ Γ, A ∨ B, B ` ∆
Γ, A ∨ B ` ∆ [∨L]

Γ ` A, B,∆
Γ→ A ∨ B;∆

[∨R]

Γ, A ∧ B, A, B ` ∆
Γ, A ∧ B ` ∆ [∧L]

Γ→ A;∆ Γ→ B;∆
Γ→ A ∧ B;∆

[∧R]

Γ, A→ A;∆
[Init]

Γ→ C;∆
Γ ` C,∆

[D]
Γ,⊥ ` ∆ [⊥L]

Fig. 7: The the cut-free fragment of the focused multi-conclusion system for intuitionistic
logic - LJQ∗.

(Init) bAc⊥ ⊗ dAe⊥ (⊥L) b⊥c⊥
(⊃L) bA ⊃ Bc⊥ ⊗ (!l?f dAe ⊗ !r?lbBc) (⊃R) dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
(∨L) bA ∨ Bc⊥ ⊗ (!r?lbAc ⊗ !r?lbBc) (∨R) dA ∨ Be⊥ ⊗ !r (?rdAe O ?rdBe)
(∧L) bA ∧ Bc⊥ ⊗ !r(?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (!r?f dAe ⊗ !r?f dBe)

Fig. 8. The theory Lljq encoding the cut-free fragment of the system LJQ∗.

4.3 LJQ∗385

The systems in the previous sections always required two contexts. There are systems, how-386

ever, that require more than two contexts to be specified, such as the focused multi-conclusion387

system for intuitionistic logic LJQ∗ depicted in Figure 7. This system is a variant of the sys-388

tem proposed by Herbelin [11, page 78] and it was used by Dyckhoff & Lengrand in [7].389

LJQ∗ has two types of sequents: unfocused sequents of the form Γ ` ∆ and focused sequents390

of the form Γ → A;∆ where the formula A, in the stoup, is focused on. Proofs are restricted391

as follows: the logical right introduction rules introduce only focused sequents, while the392

left introduction rules introduce only unfocused sequents. In this Section, we encode only393

its cut-free fragment. Later in Section 5, we elaborate on the challenges of encoding its cut394

rules.395

We use the theory Lljq depicted in Figure 8 to specify the system LJQ∗ in SELLF together396

with the signature 〈{f , l, r,∞}; {r ≺ l ≺ ∞}; {l, r,∞}〉. Besides the subexponential ∞, we make397

use of three subexponentials: the first two, l and r, are as before, used to encode, respectively,398

the left and the right-hand-side of object-logic sequents, while the third subexponential, f , is399

new and used to encode the stoup of object-logic focused sequents. A LJQ∗ sequent of the400

form Γ ` ∆ is encoded in SELLF as the sequent ` Lljq
:∞ bΓc :

l d∆e :
r · :

f · ⇑ ·, while a LJQ∗401

sequent of the form Γ→ A;∆ is encoded by the sequent ` Lljq
:∞ bΓc :

l d∆e :
r dAe :

f · ⇑ ·.402

Notice that, differently from the previous encoding, the subexponentials r and l are related403

in the pre-order and moreover contraction and weakening are not available only to f . As404

before, the restrictions to sequents imposed by the focusing discipline are encoded implicitly405

by the use of subexponentials. The specification is such that positive rules can only be applied406

to the focused formula and that negative rules can only be applied when the stoup is empty.407

To illustrate the fact that negative rules are only applicable when the stoup is empty, con-408

sider the following derivation introducing the clause (∧L), whereK is an abbreviation for the409
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A, B, A ∧ B,Γ ` ∆
A ∧ B,Γ ` ∆ [∧L]

Γ ` ∆, A ∧ B, A Γ ` ∆, A ∧ B, B
Γ ` ∆, A ∧ B

[∧R]

Γ, A⇒ B ` A,∆ Γ, A⇒ B, B ` ∆
Γ, A⇒ B ` ∆ [⇒L]

Γ, A ` B, A⇒ B,∆
Γ ` A⇒ B,∆

[⇒R]

Γ,�A, A ` ∆
Γ,�A ` ∆ [�L]

�Γ ` A, �∆
�Γ, Γ′ ` �A, �∆,∆′ [�R]

�Γ, A ` �∆
�Γ,Γ′, �A ` �∆,∆′ [�L]

Γ ` ∆, �A, A
Γ ` ∆, �A [�R]

Γ, A ` ∆, A [Init]
Γ ` ∆, A Γ, A ` ∆

Γ ` ∆ [Cut]

Fig. 9. The additive version of the proof system for classical modal logic S4.

(∧L) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (?rdAe ⊗ ?rdBe)
(⇒L) bA⇒ Bc⊥ ⊗ (?rdAe ⊗ ?lbBc) (⇒R) dA⇒ Be⊥ ⊗ (?lbAc O ?rdBe)
(�L) b�Ac⊥ ⊗ ?lbAc (�R) d�Ae⊥ ⊗ !e?rdAe
(�L) b�Ac⊥ ⊗ !e?lbAc (�R) d�Ae⊥ ⊗ ?rdAe
(Init) bAc⊥ ⊗ dAe⊥ (Cut) ?lbAc ⊗ ?rdAe
(�S ) b�Ac⊥ ⊗ ?�Lb�Ac (�S ) d�Ae⊥ ⊗ ?�Rd�Ae

Fig. 10. Figure with the theory LS4 encoding the system S4

context Lljq
:∞ bΓ′c :

l d∆e :
r · :

f ·, and Γ′ is the set Γ ∪ {A ∧ B}:410

` K ⇓ bA ∧ Bc⊥ [IL]
` Lljq

:∞ bΓ′, A, Bc :
l d∆e :

r · :
f · ⇑

` Lljq
:∞ bΓ′c :

l d∆e :
r · :

f · ⇓ !r(?lbAc O ?lbBc)
[!r ,O, 2 × ?l]

` Lljq
:∞ bΓ′c :

l d∆e :
r · :

f · ⇓ bA ∧ Bc⊥ ⊗ !r (?lbAc O ?lbBc)
[⊗]

` Lljq
:∞ bΓ′c :

l d∆e :
r · :

f · ⇑ ·
[D∞, 2 × ∃]

Since r � f , the context f must be empty in order to introduce the !r in the right branch. On411

the other hand, since r ≺ l, the l context is left untouched in the premise of this derivation,412

thus specifying precisely the ∧L introduction rule.413

The following proposition can be proved by induction on the height of focused proofs.414

Proposition 4.3
Let Γ ∪ ∆ ∪ {C} be a set of object logic formulas, and let the subexponentials l, r and f be415

specified by the signature 〈{f , l, r,∞}{r ≺ l ≺ ∞}; {l, r,∞}〉. Then the sequent ` Lljq
:
l bΓc :

r416

d∆e :
f · : · ⇑ is provable in SELLF if and only if the sequent Γ ` ∆ is provable in LJQ∗.417

4.4 Modal Logic S4418

We encode next the proof system for classical modal logic S4 depicted in Figure 9. The419

encoding of this system illustrates the use of logical equivalences and “dummy” subexponen-420

tials to encode the structural properties of systems. In particular, the rules �R and �L are the421

interesting ones. In order to introduce a � on the right, the formulas on the left whose main422
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connective is not � (Γ′) and the formulas on the right whose main connective is not � (∆′) are423

weakened.424

Consider the following subexponential signature and the theory LS4 depicted in Figure 10:425

〈{l, r,�L, �R, e,∞}, {r ≺ �R ≺ ∞, l ≺ �L ≺ ∞, e ≺ �R, e ≺ �L}, {l, r,�L, �R, e,∞}〉.

As with the other systems that we encoded, the context of the subexponential l and r will426

contain formulas of the form bAc and dAe, respectively. However, the contexts of the subex-427

ponentials �L and �R will contain formulas only formulas of the form b�Ac and d�Ae, respec-428

tively, that is, formulas containing object-logic formulas whose main connective is � and �.429

This is specified by from the following equivalences derived from the structural clauses (�S )430

and (�S ) in LS4:431

∀A.(b�Ac ≡ ?�Lb�Ac) and ∀A.(d�Ae ≡ ?�Rd�Ae).

Thus, a sequent in S4 of the form �Γ,Γ′, �Γ′′ ` �∆,∆′,�∆′′ is encoded in SELLF by the432

sequent ` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′e :

r · :
e · ⇑ ·. Notice that the context of433

the index e is empty. It is a “dummy” index that is not used to mark formulas, but to specify434

the structural properties of rules. In particular, the connective !e can be used to erase the435

context of the subexponentials l and r, as illustrated by its introduction rule shown below:436

` LS4
:∞ b�Γc :

�L ·
:
l d�∆e :�R · :

r · :
e · ⇑ F

` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′e :

r · :
e · ⇓ !eF

[!e]

As e is not related to the indexes l and r in the preorder �, the contexts for l and r must be437

empty in the premise of the rule above, i.e., the formulas in these contexts must be weakened.438

These are exactly the restrictions needed for encoding the rules �L and �R in S4, specified by439

the clauses (�L) and (�R) containing !e . For instance, the bipole derivation introducing the440

formula (�R) has necessarily the following shape:441

` K ⇓ d�Ae⊥ [IR]

` LS4
:∞ b�Γc :

�L ·
:
l d�∆e :�R dAe :

r · :
e · ⇑ ·

` LS4
:∞ b�Γc :

�L ·
:
l d�∆e :�R · :

r · :
e · ⇑ ?rdAe

` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′,�Ae :

r · :
e · ⇓ !e?rdAe

[!e]

` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′,�Ae :

r · :
e · ⇓ d�Ae⊥ ⊗ !e?rdAe

[⊗]

` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′,�Ae :

r · :
e · ⇑ ·

[D∞,∃]

where K is ` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′,�Ae :

r · :
e ·. As one can easily442

check, the derivation above corresponds exactly to S4’s rule �R.443

The following proposition can be easily proved by induction on the height of focused444

proofs.445

Proposition 4.4
Let Γ ∪ Γ′ ∪ Γ′′ ∪ ∆ ∪ ∆′ ∪ ∆′′ be a set of object logic formulas, and let the subexponentials446

l, r, �L, �R, e, and ∞ be specified by the signature447

〈{l, r,�L, �R, e,∞}, {r ≺ �R ≺ ∞, l ≺ �L ≺ ∞, e ≺ �R, e ≺ �L}, {l, r,�L, �R, e,∞}〉.

Then the sequent ` LS4
:∞ b�Γc :

�L bΓ′, �Γ′′c
:
l d�∆e :�R d∆′,�∆′′e :

r · :
e · ⇑ · is provable in448

SELLF if and only if the sequent �Γ, Γ′, �Γ′′ ` �∆,∆′,�∆′′ is provable in S4.449
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Γ, A ∧ B, A, B −→ C
Γ, A ∧ B −→ C

[∧L] Γ −→ A Γ −→ B
Γ −→ A ∧ B

[∧R]

Γ, A ∨ B, A −→ C Γ, A ∨ B, B −→ C
Γ, A ∨ B −→ C

[∨L]
Γ −→ Ai

Γ −→ A1 ∨ A2
[∨Ri]

Γ, A ⊃ B −→ A Γ, A ⊃ B, B −→ C
Γ, A ⊃ B −→ C

[⊃ L]
Γ, A −→ B
Γ −→ A ⊃ B

[⊃ R]

Γ,©A, A −→ ©B
Γ,©A −→ ©B

[©L] Γ −→ A
Γ −→ ©A

[©R]

Γ, A −→ A
[Init]

Γ −→ A Γ, A −→ C
Γ −→ C

[Cut]

Fig. 11. The additive version of the proof system for minimal lax logics – Lax.

(∧l) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧r) dA ∧ Be⊥ ⊗ (!l?rdAe ⊗ !l?rdBe)
(∨l) bA ∨ Bc⊥ ⊗ (?lbAc& ?lbBc) (∨r) dA ∨ Be⊥ ⊗ (!l?rdAe ⊕ !l?rdBe)
(⊃l) bA ⊃ Bc⊥ ⊗ (!l?rdAe ⊗ ?lbBc) (⊃r) dA ⊃ Be⊥ ⊗ !l(?lbAc O !l?rdBe)
(©L) b©Ac⊥ ⊗ !◦r ?lbAc (©R) d©Ae⊥ ⊗ !l?rdAe
(I) bAc⊥ ⊗ dAe⊥ (Cut) ?lbAc ⊗ !l?rdAe
(©S ) d©Ae⊥ ⊗ ?◦r d©Ae

Fig. 12. The theory LLax encoding the system Lax

As a final remark, it is also possible to encode the proof system for intuitionistic S4, which450

only allows for at most one formula to be at the right-hand-side of sequents. The encoding is451

similar to the the encoding above for classical logic with the difference that it contains extra452

subexponential bangs for specifying this restriction on sequents, similar to what was done453

in our encoding of G1m. Formally, the encoding is based on the following subexponential454

signature with two dummy subexponentials el and er , where the former behaves as the one455

used in the encoding of classical logic, while the latter additionally checks that the context to456

the right-hand-side of sequents is empty:457

〈{l, r,�L, �R, el , er ,∞}, {r ≺ �R ≺ ∞, l ≺ �L ≺ ∞, el ≺ �R, el ≺ �L, er ≺ �L}, {l,�L,∞}〉.

For instance, the introduction rule �R shown below is specified by the clause ∃A.[d�Ae⊥ ⊗458

!er ?rdAe].459

�Γ −→ A
�Γ,Γ′ −→ �A

4.5 Lax Logic460

Our last example is the encoding of the proof system for minimal Lax logic depicted in461

Figure 11. Its encoding illustrates the use of subexponentials to specify that a formula can462

only be introduced if a side-formula is present in the premise. An example of such a rule is463

the introduction rule for © on the left. To introduce it on the left, the main connective of the464

formula on the right-hand-side must also be a©. As we detailed next, we use subexponentials465

to perform such a check, without mentioning the formula on the right-hand-side, as described466

at the end of Section 3.2.467
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Consider the following signature 〈{l, r, ◦r,∞}; {r ≺ ◦r ≺ l ≺ ∞}; {l,∞}〉. Intuitively, we468

will interpret an object-logic sequent of the forms Γ −→ H and Γ −→ ©G as the meta-level469

sequents, respectively, ` LLax
:∞ bΓc :

l · :◦r dHe :
r · ⇑ · and ` LLax

:∞ bΓc :
l d©Ge :◦r · :

r · ⇑ ·.470

That is, the context of the index l will contain all the formula on the left-hand-side, while the471

formula to the right-hand side will either be in the context of r or the context of ◦r. However,472

only object-level formulas whose main connective is © can be in the context of ◦r. The473

encoding of the proof system Lax is given in Figure 12. As in the specification of S4, this is474

accomplished by using the following equivalence derived from the structural clause (©S ):475

∀A.d©Ae ≡ ?◦r d©Ae.

That is, one can move whenever needed a meta-level formula d©Ae to the context of ◦r.476

In the specification LLax, the clause (©L) is the most interesting one specifying the cor-477

responding rule of the proof system. The !◦r specifies that the context of the the restriction478

that the formula on the right must be marked with a ©. This is illustrated by the following479

derivation:480

` LLax
:∞ bΓ,©Ac :

l · :◦r · :
r · ⇓ b©Ac⊥

[I]

` LLax
:∞ bΓ,©A, Ac :

l d©Be :◦r · :
r · ⇑ ·

` LLax
:∞ bΓ,©Ac :

l d©Be :◦r · :
r · ⇑ ?lbAc

[?l]

` LLax
:∞ bΓ,©Ac :

l d©Be :◦r · :
r · ⇓ !◦r ?lbAc

[!◦r ]

` LLax
:∞ bΓ,©Ac :

l d©Be :◦r · :
r · ⇓ b©Ac⊥ ⊗ !◦r ?lbAc

[⊗]

` LLax
:∞ bΓ,©Ac :

l d©Be :◦r · :
r · ⇑ ·

[D∞,∃]

Notice that due to the !◦r , the context of r must be empty. That is, the formula d©Be must be481

in the context of ◦r, or in other words the main connective of the object-logic formula to the482

right-hand-side is necessarily a©.483

Notice as well that since r ≺ ◦r, the clause (©R) is admissible in the theory. That is,484

a formula can move from the context of ◦r to the context of r. With respect to the proof485

system Lax this formula specifies exactly the rule ©R, introducing the connective © on the486

right. Therefore, in order to obtain a stronger level of adequacy, namely on the level of487

derivations [20], we mention it explicitly in the encoding.488

The following proposition is proved by induction on the height of derivations.489

Proposition 4.5
Let Γ∪{C} be a set of object logic formulas, and let the subexponentials l,r and ◦r be specified490

by the signature 〈{l, r, ◦r,∞}; {r ≺ ◦r ≺ l ≺ ∞}; {l,∞}〉. Then the sequent ` LLax
:∞ bΓc :

l · :◦r491

dCe :
r · ⇑ · is provable in SELLF if and only if the sequent Γ −→ C is provable in Lax and492

the sequent ` LLax
:∞ bΓc :

l d©Ce :◦r · :
r · ⇑ · is provable in SELLF if and only if the sequent493

Γ −→ ©C is provable in Lax.494

5 Reasoning about Sequent Calculus495

This section presents general and effective criteria for checking whether a proof system en-496

coded in SELLF has important proof theoretic properties, namely, cut-elimination, invert-497

ibility of rules, and the completeness of atomic identity rules. Instead of proving each one498

of these properties from scratch, we just need to check whether the specification of a proof499

system satisfies the corresponding criteria. Moreover, we show that checking such criteria500

can be easily automated.501
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5.1 Cut-elimination for cut-coherent systems502

The rule Cut is often presented as the rule below503

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1, Γ2 ` ∆1,∆2
[Cut]

where Γ1,Γ2,∆1,∆2 may be sets or multisets of formulas. The formula A is called the cut-504

formula. A proof system is said to have the cut-elimination property when the cut rule is505

admissible on this system, i.e., every proof that uses cuts can be transformed into a cut-free506

proof. There at least two important consequences of the cut-elimination theorem, namely the507

sub-formula property and the consistency of the proof system. Cut-elimination was first508

proved by Gentzen [9] for proof systems for classical (LK) and intuitionistic logic (LJ).509

Gentzen’s proof strategy has been re-used to prove the cut-elimination of a number of proof510

systems. The proof is quite elaborated and it involves a number of cases, thus being exhaus-511

tive and error prone. The strategy can be summarized by the following steps:512

1. (Reduction to Principal Cuts) Transforming a proof with cuts into a proof with principal513

cuts, that is, a cut whose premises are derived by introducing the cut-formula itself. This514

is normally shown by permuting inference rules, e.g., permuting the cut-rule over other515

introduction rules.516

2. (Reduction to Atomic Cuts) Transforming a proof with principal cuts into a proof with517

atomic cuts. This is normally shown by reducing a cut with a complex cut-formula into518

(possible many) cuts with simpler cut-formulas.519

3. (Elimination of Atomic Cuts) Transforming a proof with atomic cuts into a cut-free proof.520

This is normally shown by permuting atomic cuts over other introduction rules until it521

reaches the leaves and it is erased.522

We provide a criteria for each one of the steps above. The step two is not problematic.523

In particular, a criteria for reducing principal cuts to atomic cuts was given by Pimentel and524

Miller in [16] when encoding systems in linear logic. This criteria easily extends to the use525

of SELLF (see Definition 5.6 and Theorem 5.8).526

While for specifications in linear logic steps one and three did not cause any problems [16],527

for specifications in SELLF they do not work as smoothly. For the step three of eliminating528

atomic cuts, however, we could still find a simple criteria for when this step can be performed529

(see Definition 5.9 and Theorem 5.10). But determining criteria for when it is possible to530

transform arbitrary cuts into principal cuts (step one) turned out to be a real challenge. And531

it should be, since SELLF allows for much more complicated proof systems to be encoded,532

such as mLJ and LJQ∗, with the highest level of adequacy. There are at least three possible533

strategies or reductions one can use to perform this transformation:534

• (Permute Cut Rules Upwards) As done by Gentzen, one can try to permute cuts over other535

introduction rules. The following is an example of such a transformation in G1m:536

Γ −→ A
Γ′, A, F −→ G
Γ′, A −→ F ⊃ G

[⊃R]

Γ,Γ′ −→ F ⊃ G
[Cut]

 

Γ −→ A Γ′, A, F −→ G
Γ,Γ′, F −→ G

[Cut]

Γ,Γ′ −→ F ⊃ G
[⊃R]

We identify a criteria for when such permutations are always possible (see Lemma 5.2).537
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• (Permute Introduction Rules Downwards) In some cases, it is not possible to permute538

the cut over an introduction rule. For instance, in the mLJ derivation to the left, it is not539

always possible to permute a cut over an ⊃R, because such a permutation would weaken540

the formulas in ∆, which may be needed in the proof of left premise of the cut rule.541

S

Γ, A, B, F −→ G
Γ, A ∧ B, F −→ G

[∧L]

Γ, A ∧ B −→ F ⊃ G,∆
[⊃R]

Γ −→ F ⊃ G,∆
[Cut]

 
S

Γ, A, B, F −→ G
Γ, A, B −→ F ⊃ G,∆

[⊃R]

Γ, A ∧ B −→ F ⊃ G,∆
[∧L]

Γ −→ F ⊃ G,∆
[Cut]

The strategy then is to permute downwards the rule introducing the cut-formula A on the542

Cut’s right premise, as illustrated by the derivation to the right. In some cases, however,543

the cut-formula might need to be introduced multiple times. For instance, in the following544

S4 derivation, the cut cannot permute upwards, but one can still introduce the cut-formula545

�A on the right before introducing the formula �F. Only, in this case, the cut-formula is546

introduced twice, as illustrated by the derivation to the right.7547

S

�Γ,�A, A ` �∆, F
�Γ,�A ` �∆, F [�L]

�Γ,Γ′,�A ` �∆,∆′,�F
[�R]

�Γ,Γ′ ` �∆,∆′,�F
[Cut]

 
S

�Γ,�A, A ` �∆, F
�Γ,�A ` �∆, F [�L]

�Γ,Γ′,�A, A ` �∆,∆′,�F
[�R]

�Γ,Γ′,�A ` �∆,∆′,�F
[�L]

�Γ,Γ′ ` �∆,∆′,�F
[Cut]

A similar case also appears in mLJ, e.g., when the cut formula is A ⊃ B. We identify548

criteria for when an introduction rule can permute over another introduction rule (see549

Lemma 5.4), which handles the cases for mLJ and S4 illustrated above.550

• (Transform one Cut into Another Cut) There are systems, such as LJQ∗, which have more551

than one cut rule. For instance, LJQ∗ has eight different cut rules, three of them shown552

in Example 5.3. In these cases, for permuting a cut of one type over an introduction553

rule might involve transforming this cut into another type of cut. As these permutations554

involve more elaborated proof transformations, finding criteria that is not ad-hoc to one555

system is much more challenging (if not impossible) and we will not provide one here.556

We start our discussion of cut-elimination on specified sequent systems by the permutabil-557

ity step (step one). For this purpose, we define the notion permutation of clauses and then558

establish criteria for permutation of cut and introduction clauses.559

Definition 5.1
Given C1 and C2 clauses in a canonical proof system theory X, we say that C1 permutes560

over C2 if, given an arbitrary focused proof π of a sequent S ending with a bipole derivation561

introducing C2 followed by a bipole derivation introducing C1, then there exists a focused562

proof π′ of S ending with a bipole derivation introducing C1 followed by a bipole derivation563

introducing C2.564

Lemma 5.2 (Criteria cut permutation)
Let X be a canonical proof system theory. A cut clause permutes over an introduction or565

structural clause C ∈ X if, for each s, t ∈ I such that !sB appears in C and ?tB′ is a subformula566

of the monopole B, one of the following holds:8567

7This problem of permuting cuts in the system S4 was emphasized by Stewart and Stouppa in [26] and the complete proof can be found in [14].
8Of course, if the subexponential !s is not present in C, then the restrictions on s don’t apply.
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1. Cut = ∃A.!a?bbAc ⊗ !c?ddAe and either:568

i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;569

ii. permutation to the right: s � a, d and c � t;570

iii. permutation to the left: s � b, c and a � t;571

2. Cut = ∃A.!a?bbAc ⊗ ?ddAe and either:572

i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;573

ii. permutation to the right: s � a, d;574

3. Cut = ∃A.?bbAc ⊗ !c?ddAe and either:575

i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;576

ii. permutation to the left: s � b, c;577

4. Cut = ∃A.?bbAc ⊗ ?ddAe and either:578

i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;579

ii. permutation to the right or left: s is the least element of 〈I,�〉.580

Proof. Suppose that C is a formula of the shape !s?tB9.581

• Case Cut = ∃A.!a?bbAc ⊗ !c?ddAe. Consider the proof:582

Ξ1
` K1 ≤a +bbAc : · ⇑ ·
` K1 : · ⇓ !a?bbAc

[!a, ?b]

Ξ′2
` K2 ≤c,s +ddAe +t B : · ⇑ ·
` K2 ≤c +ddAe : · ⇓ !s?tB

[!s , ?t]

` K2 ≤c +ddAe : · ⇑ · [D∞]

` K2 : · ⇓ !c?ddAe
[!c , ?d]

` K1 ⊗ K2 : · ⇓ !a?bbAc ⊗ !c?ddAe
[⊗]

` K1 ⊗ K2 : · ⇑ [D∞,∃]

If s � d and d is bounded this case will not happen and the permutation is by vacuously.583

Otherwise, if s � d, s � a and c � t, the proof above can be replaced by584

Ξ1
` K1 ≤s,a +bbAc : · ⇑ ·
` K1 ≤s: · ⇓ !a?bbAc

[!a, ?b]

Ξ′2
` K2 ≤s,c +tB +d dAe : · ⇑ ·
` K2 ≤s +tB : · ⇓ !c?ddAe

[!c , ?d]

` K1 ⊗ K2 ≤s +tB : · ⇓ !a?bbAc ⊗ !c?ddAe
[⊗]

` K1 ⊗ K2 ≤s +tB : · ⇑ · [D∞,∃]

` K1 ⊗ K2 : · ⇓ !s?tB
[!s , ?t]

` K1 ⊗ K2 : · ⇑ [D∞]

Notice that, since s � a, K1 ≤s,a= K1 ≤a. Hence, in this case, the permutation is to the585

right. The same reasoning can be done for the left premise.586

9In fact, we should consider bipoles D containing subformulas of the form !sC with C a monopole, but we will present only the case where D = !s?tB
for readability purposes.
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• Case Cut = !a?bbBc ⊗ ?ddBe. If s � d and s � a, then the derivation587

Ξ1
` K1 ≤a +bbAc : · ⇑ ·
` K1 : · ⇓ !a?bbAc

[!a, ?b]

Ξ′2
` K2 ≤s +ddAe +t B : · ⇑ ·
` K2 +d dAe : · ⇓ !s?tB

[!s , ?t]

` K2 +d dAe : · ⇑ · [D∞]

` K2 : · ⇓ ?ddAe
[?d]

` K1 ⊗ K2 : · ⇓ !a?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 : · ⇑ [D∞,∃]

can be replaced by588

Ξ1
` K1 ≤s,a +bbAc : · ⇑ ·
` K1 ≤s: · ⇓ !a?bbAc

[!a, ?b]

Ξ′2
` K2 ≤s +tB +d dAe : · ⇑ ·
` K2 ≤s +tB : · ⇓ ?ddAe

[?d]

` K1 ⊗ K2 ≤s +tB : · ⇓ !a?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 ≤s +tB : · ⇑ · [D∞,∃]

` K1 ⊗ K2 : · ⇓ !s?tB
[!s , ?t]

` K1 ⊗ K2 : · ⇑ [D∞]

There is a very interesting observation in this case: the restrictions for permuting the cut589

clause over the left premise form a superset of the restrictions for the right premise. In590

fact, other the fact that s should be the least element of I, it should also be the case that591

a � t. That is, if the permutation is possible at all, it can be always done over the right592

premise. Finally, if s � d and d is bonded, then focusing over !s?tB is not possible at all593

(the same for the left premise).594

• Case Cut = ?bbBc ⊗ !c?ddBe. Analogous to the last case.595

• Case Cut = ?bbBc ⊗ ?ddBe. If s is the least element of I, then the derivation596

Ξ1
` K1 +b bAc : · ⇑ ·
` K1 : · ⇓ ?bbAc [?b]

Ξ′2
` K2 ≤s +ddAe +t B : · ⇑ ·
` K2 +d dAe : · ⇓ !s?tB

[!s , ?t]

` K2 +d dAe : · ⇑ · [D∞]

` K2 : · ⇓ ?ddAe [?d]

` K1 ⊗ K2 : · ⇓ ?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 : · ⇑ [D∞,∃]

can be replaced by10
597

Ξ1
` K1 ≤s +bbAc : · ⇑ ·
` K1 ≤s: · ⇓ ?bbAc

[?b]

Ξ′2
` K2 ≤s +tB +d dAe : · ⇑ ·
` K2 ≤s +tB : · ⇓ ?ddAe

[?d]

` K1 ⊗ K2 ≤s +tB : · ⇓ ?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 ≤s +tB : · ⇑ · [D∞,∃]

` K1 ⊗ K2 : · ⇓ !s?tB
[!s , ?t]

` K1 ⊗ K2 : · ⇑ [D∞]

10Observe that the permutation could be done also on the left premise.
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598

Example 5.3
Note that, from the systems presented in Section 4, the cuts defined in systems G1m and Lax599

permutes over any introduction or structural clause. This means that, for these systems, the600

classical argument of permuting cuts up the proof until getting principal cuts works fine.601

mLJ’s cut clause (CutmLJ = ∃A.?lbAc ⊗ ?rdAe), on the other hand, does not permute over602

clauses (⊃R) and (∀R), since !l is present in both clauses but neither r is bounded (while l � r)603

nor l is the least element in the signature 〈{∞, l, r}; {l � ∞, r � ∞}; {∞, l, r}〉. This captures well,604

at the meta-level, the fact that the cut rule does not permute over the rules (⊃R) and (∀R) at605

the object-level.606

In the same way, in S4, the cut clause CutS 4 = ∃A.?lbAc ⊗ ?rdAe does not permute over the607

clauses (�R) and (�L) since l, r are unbounded and e is not the least element of the signature608

〈{l, r,�L, �R, e,∞}, {r � �R � ∞, l � �L � ∞, e � �R, e � �L}, {l, r,�R, �R,∞}〉.

In LJQ∗, three cut rules are admissible11:

Γ1 → A;∆1 A,Γ2 → B;∆2

Γ1,Γ2 → B;∆1,∆2
[Cut1]

Γ1 → A;∆1 A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
[Cut2]

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
[Cut3]

The first rule cannot be encoded in SELLF using only bipoles with the signature presented609

in this paper. In fact, we would need to add “dummy” subexponentials for guaranteeing the610

presence of focused formulas on the context, more or less the same way done for the Lax611

logic. The other cut rules can be specified, respectively, by the clauses612

(Cut2) !r?lbAc ⊗ !r?f dAe (Cut3) !r?lbAc ⊗ !r?rdAe.

It is interesting to note that, in Cut2, the permutation to the right is by vacuously with every613

clause in the system. And it should be so since, at the object level, the left premise of the614

Cut2 rule has a focused right cut formula, which must be principal. Hence the cut rule cannot615

permute up in the object level, as the cut clause does not permute over any other clause of the616

system. For the permutation to the left, the conditions s � l and s � r and r � t for any clause617

of the form !sB(· · · ?tB′) appearing in Lljq, implies that: s = r and t = r, l. Hence the Cut2618

clause permutes to the left over (⊃L), (∨L), (∧L) and (∨R) and it does not permute over (⊃R)619

and (∧R). As it should be since, at the object level, the premises of the rule (∧R) are focused620

and, as already discussed for the system mLJ, the rule (⊃R) erases formulas of the premises,621

hence not permuting with the cut rule.622

For the Cut3 clause, the argument is similar to the one just presented and Cut3 does not623

permute to the right or to the left with (⊃R) and (∧R), permuting over the other introduction624

clauses of the system. As said before, the cut-elimination process for LJQ∗ is more involving,625

making use of exchange between cuts, and it will not be discussed in more details here.626

The following lemma establishes criterias for checking when a clause permutes over an-627

other clause. It captures all the non-trivial permutations for the systems mLJ and S4, that is,628

all the cases that are not true by vacuously.629

11In fact, there are five admissible cut rules in LJQ∗ , but the other two are derived from those presented here. And it is also worthy to note that there are
three non-admissible cut rules in LJQ∗ .
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Lemma 5.4 (Criteria introduction permutation)
Let X be a canonical system and C1,C2 ∈ X be introduction or structural clauses. Assume630

that all subexponentials are unbounded, i.e., I = U. Then C1 permutes over C2 if at least one631

of the following is satisfied:632

1. If C1 and C2 have no occurrences of subexponential bangs;633

2. If C1 has at least one occurrence of a subexponential bang but C2 has no occurrence of634

subexponential bang, then for all occurrences of a formula of the form !sB1 in C1 and for635

all occurrences of ?t in C2, it is the case that at least one of the following is true:636

i. s � t;637

ii. if C2 = ∃x1 . . .∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ B], where q ∈ {b·c, d·e}, then the following638

equivalence is derivable from the structural rules ofX, where s � v : q(�(x1, . . . , xn))) ≡639

?vq(�(x1, . . . , xn))).640

3. If C2 has at least one occurrence of a subexponential bang but C1 has no occurrence of641

subexponential bang, then, for all occurrences of a formula of the form !sB1 in C2 and for642

all occurrences of ?t in C1, either:643

i. s � t (in this case, the clause C1 is unnecessary and can be dropped);644

ii. s is the least element of I.645

4. If both C1 and C2 have at least one occurrence of a subexponential bang, then for each646

sk , tk ∈ I, k = {1, 2}, such that !sk Bk appears in Ck and ?tk B′k is a subformula of the647

monopole Bk, at least one of the following is true:648

i. s2 � t1 and s1 � s2 (in this case, the clause C1 is unnecessary and can be dropped);649

ii. s2 is the least element of I and s1 � t2 .650

Proof. The assumption that all subexponentials are unbounded eliminates any problems caused651

by the splitting of formulas in the context, such as the case of permuting a & over a ⊗. As all652

formulas in the context are unbounded, we do not need to split them. Hence, we only have to653

analyze the problems due to the subexponentials.654

The case when C1 and C2 do not contain subexponential bangs is easy. We show only655

the second case, when C1 has a subexponential bang, but C2 does not. The remaining cases656

follow similarly. The following piece of derivation illustrates how the permutation is possible.657

· · ·

· · ·

· · ·

Ξ
` K ≤s +uB +t A : · ⇑ ·
` K ≤s +uB : · ⇑ ?tA

[?t] · · ·
` K ≤s +uB : · ⇓ C2

` K ≤s +uB : · ⇑ [D∞]

` K ≤s: · ⇑ ?uB
[?u] · · ·

` K ≤s: · ⇑ B1

` K : · ⇓ !sB1
[!s] · · ·

` K : · ⇓ C1

` K : · ⇑ [D∞]

If s � t, we can obtain the proof below where with a decide rule on C2 appearing at the658
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bottom12.659

· · ·

· · ·

· · ·

Ξ
` K ≤s +tA +u B : · ⇑ ·
` K ≤s +tA : · ⇑ ?uB

[?u] · · ·
` K ≤s +tA : · ⇑ B1

` K +t A : · ⇓ !sB1
[!s] · · ·

` K +t A : · ⇓ C1
[D∞]

` K : · ⇑ ?tA
[?t] · · ·

` K : · ⇓ C2

` K : · ⇑ [D∞]

For when s � t, then the introduction of !s will cause the weakening of the formula A,660

However, if q(�(x1, . . . , xn))) ≡ ?vq(�(x1, . . . , xn))), where q(�(x1, . . . , xn))) is the formula661

used by C2 and s � v , then there is a derivation where q(�(x1, . . . , xn))) is not weakened by662

the introduction of !s . Hence, it is possible to focus on C2 again after focusing on C1 and663

recover the formula A.664

665

Observe that this last lemma is much more involving than Lemma 5.2. In fact, the cut clause666

is a formula with no head, and what it roughly does is to split the context into two and add a667

left formula in one part and a right formula in the other. When permuting two introduction668

clauses, on the other hand, one has to be careful not erasing contexts that will be necessary669

for the application of the next clause. For instance, the head of the clause C1 can be in a670

context that will be eventually erased by the clause C2, hence the exchange cannot happen.671

As said before, our main interest on permuting clauses is to be able to consider only object-
level principal cuts. We will clarify better now this concept. Let X be a canonical system
and Ξ be a SELLF proof of the sequent ` K1 ⊗ K2 : · ⇑ · ending with an introduction of the
Cut clause. The premise of that decide rule is the conclusion of an [∃] infer rule. Let A be
the substitution term used to instantiate the existential quantifier. We say that this occurrence
of the [D∞] inference rule is an object-level cut with cut formula A. Suppose A = �(B̄) is a
non-atomic object level formula with left and right introduction rules

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

We say that this introduction of the Cut clause is principal if Ξ has the form672

Ξ1
` K1 ≤a +bb�(B̄)c : · ⇓ Bl[B̄/x̄]

` K1 ≤a +bb�(B̄)c : · ⇑ ·
[D∞,∃,⊗, I]

` K1 : · ⇓ !a?bb�(B̄)c
[!a, ?b]

Ξ2
` K2 ≤c +dd�(B̄)e : · ⇓ Br[B̄/x̄]

` K2 ≤c +dd�(B̄)e : · ⇑ ·
[D∞,∃,⊗, I]

` K2 : · ⇓ !c?dd�(B̄)e
[!c , ?d]

` K1 ⊗ K2 : · ⇓ !a?bb�(B̄)c ⊗ !c?dd�(B̄)e
[⊗]

` K1 ⊗ K2 : · ⇑ [D∞,∃]

Definition 5.5
Let X be a canonical proof system theory. We say that X is cut-principal if every proof Ξ673

of a sequent S of the form ` K : ∆ ⇑ ·, with K[∞] = X, having an introduction of a Cut674

12Since s � t, the introduction of !s does not cause the weakening of the formula A.
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clause, can be transformed, using permutations over clauses, into a proof Ξ′ of S where that675

introduction of the Cut clause is principal.676

Hence, for example, the systems G1m and Lax are cut-principal, since their cut clauses per-677

mutes over any other clause of the system. A straightforward case analysis shows that mLJ678

and S4 also have this property: when cuts cannot permute up, rules can permute down, mak-679

ing the cuts principal.680

Once we can transform an introduction of a cut into a principal one, the proof of cut681

elimination for logical systems continues by showing how to transform a principal cut into682

cuts with “simpler” formulas. This transformation is often based on the fact that systems683

have “dual” introduction rules for each connective. In [16], Pimentel and Miller introduced684

the concept of cut-coherence for linear logic specifications that captures this notion of duality.685

We extend this definition to our setting with subexponentials.686

Definition 5.6
Let X be a canonical proof system theory and � an object-level connective of arity n ≥ 0.
Furthermore, let the formulas

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

be the left and right introduction rules for �, where the free variables of Bl and Br are in the687

list of variables x̄. The object-level connective � has cut-coherent introduction rules if the688

sequent ` K∞ : · ⇑ ∀x̄(B⊥l O B⊥r ) is provable in SELLF, where K∞[∞] = {Cut}, {Cut} is the689

set of all cut clauses in X and K∞[i] = ∅ for any other i ∈ I. A canonical proof system theory690

is called cut-coherent if all object-level connectives have cut-coherent introduction rules.691

Example 5.7
The cut-coherence of the G1m specification is established by proving the following sequents.

(⊃) ` CutG1m
:∞ · :

l · :
r · :

f · ⇑ ?l!rdAe⊥ O !lbBc⊥, ?l(!lbAc⊥ ⊗ !rdBe⊥)
(∧) ` CutG1m

:∞ · :
l · :

r · :
f · ⇑ !lbAc⊥ ⊗ !lbBc⊥, ?l!rdAe⊥ O ?l!rdBe⊥

(∨) ` CutG1m
:∞ · :

l · :
r · :

f · ⇑ !lbAc⊥ ⊕ !lbBc⊥, ?l!rdAe⊥ & ?l!rdBe⊥
(∀) ` CutG1m

:∞ · :
l · :

r · :
f · ⇑ !lbBxc⊥, ?l∃x.!rdBxe⊥

(∃) ` CutG1m
:∞ · :

l · :
r · :

f · ⇑ ∃x.!lbBxc⊥, ?l!rdBxe⊥

All these sequents have simple proofs. In general, deciding whether or not canonical systems692

are cut-coherent involves a simple algorithm (see Theorem 5.11).693

Intuitively, the notion of cut-coherence on the meta-level corresponds to the property of694

reducing the complexity of a cut on the object-level. If a connective � is proven to have cut-695

coherent introduction rules, then a cut with formula �(x̄) can be replaced by simpler cuts using696

the operations of reductive cut-elimination, until atomic cuts are reached. This is proved by697

Theorem 5.8.698

We need the following definition specifying cuts with atomic cut formulas only.

ACut = ∃A.Cut(A) ⊗ atomic(A)).

Theorem 5.8
Let the disjoint union X ∪ {Cut} be a principal, cut-coherent proof system. If ` K : · ⇑ · is699

provable, then ` AK : · ⇑ · is provable where K[∞] = X ∪ {Cut} and AK[∞] = X ∪ {ACut}.700
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Proof. (Sketch – see [16] for the detailed proof.) The proof of this theorem follows the usual
line of replacing cuts on general formulas for cuts on atomic formulas for first-order logic,
being careful about the subexponentials. Let Ξ be a proof of the sequent ` K : · ⇑ · ending
with an object-level cut over a cut formula �(B̄) with left and right introduction rules

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

Since X is cut-principal, there exist proofs of ` K1 : · ⇑ Bl and ` K2 : · ⇑ Br, where K =
K1 ⊗K2. Since X is a cut-coherent proof system theory the sequent ` K∞ : · ⇑ ∀x̄(B⊥l O B⊥r )
is provable. Thus, the following three sequents all have cut-free proofs in SELL13:

` K1, Bl[B̄/x̄] ` K2, Br[B̄/x̄] ` ?∞Cut, Bl[B̄/x̄]⊥, Br[B̄/x̄]⊥

By using two instances of SELL cut, we can conclude that14

` K1,K2

has a proof with cut. Applying the cut-elimination process for SELL will yield a cut-free701

SELL proof of the same sequent. Observe that the elimination process can only instantiate702

eigenvariables of the proof with “simpler” formulas, hence the sizes of object-level cut for-703

mulas in the resulting cut-free meta-level proof does not increase. Using the completeness of704

SELL in SELLF we know that705

` K : · ⇑ ·

has a proof of smaller object-level cuts and the result follows by induction.706

The last step in Gentzen’s cut-elimination strategy is to eliminate atomic cuts by permuting707

them upwards. However, as in the transformation of proofs with cuts into proofs with princi-708

pal cuts only, the subexponential bangs may disallow that atomic cuts can be eliminated. A709

further restriction on cut clauses is needed.710

Definition 5.9
Let X be a principal, cut-coherent proof system theory. We say that a cut clause Cut =711

∃A.!a?bbAc ⊗ !c?ddAe is weak if for all s, t ∈ I such that ?sb·c, ?td·e appears in X, b � s and712

d � t.713

X is called weak cut-coherent if, for all Cut ∈ X, Cut is weak.714

Theorem 5.10
Let the disjoint union X ∪ {ACut} be a weak cut-coherent proof system. Let Γo −→ ∆o be an715

object-level sequent and ` K : · ⇑ · be its SELLF encoding, where K[∞] = X ∪ {ACut}. If716

` K : · ⇑ · is provable, then ` K ′ : · ⇑ · is provable where K ′[∞] = X and K[i] = K ′[i] for717

any other i ∈ I.718

Proof. The usual proof that permutes an atomic cut up in a proof can be applied here (since719

the system is principal). Any occurrence of an instance of [D∞] on the ACut formula can720

be moved up in a proof until it can either be dropped entirely or until one of the premises is721

13By abuse of notation, we will represent the contexts in SELLF and its translation in SELL using the same symbol.
14Reminding that Cut ∈ K[∞].
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proved by an instance of [D∞] on the Init:15
722

Ξ
` K1 ≤a +bbAc : · ⇑ ·
` K1 : · ⇓ !a?bbAc

[!a, ?b]

` K1
2 : · ⇓ dAe⊥ ` K2

2 : · ⇓ bAc⊥

` K2 ≤c +d : · ⇓ dAe⊥ ⊗ bAc⊥ [⊗]

` K2 ≤c +ddAe : · ⇑ · [D∞,∃]

` K2 : · ⇓ !c?ddAe
[!c , ?d]

` K1 ⊗ K2 : · ⇓ !a?bbAc ⊗ !c?ddAe
[⊗]

` K : · ⇑ · [D∞,∃]

In that case, there must exist an index s such that bAc ∈ K2
2 [s]. If b � s, then we can723

substitute the proof of the conclusion of the cut inference above by the proof Ξ (similar to the724

right case). Hence the result holds for weak cut-coherent systems.725

The next result states that to check whether or not a proof system encoding is weak cut-726

coherent is decidable. See [16] for a similar proof.727

Theorem 5.11
Determining whether or not a canonical proof system is weak cut-coherent is decidable. In728

particular, determining if the cut clause proves the duality of the introduction rules for a given729

connective can be achieved by proof search in SELLF bounded by the depth v+ 2 where v is730

the maximum number of premise atoms in the bodies of the introduction clauses.731

We can develop a general method for checking whether a proof system encoded in SELLF732

admits cut-elimination by putting all these results together. The first step is to use Lemma 5.2733

to check for which clauses the cut permutes over. Then for each remaining clause, C, check734

using Lemma 5.4, the introduction/structural clauses of the system permutes over C. After735

this step one is reduced with the non-trivial cases for when the transformation of a proof with736

cuts into a proof with atomic cuts only is not straightforward and must be proved individually.737

We then check whether the theory is cut-coherent, which from Theorem 5.8, implies that738

principal cuts can be reduced to atomic cuts. This check requires bounded proof search as739

described in Theorem 5.11. Finally, we check whether atomic cuts can be eliminated by740

checking whether the theory is weak cut-coherent. We have implemented this method, as741

well as the checking for atomic identities, as detailed in Section 6.742

5.2 Atomic Identities743

The notion of cut-coherence implies that non-atomic principle cuts can be replaced by simpler744

ones. We now consider the dual problem of replacing initial axioms with its atomic version.745

The discussion bellow is pretty much similar to the ideas presented in [16].746

Definition 5.12
Let X be a canonical proof system theory and � an object-level connective of arity n ≥ 0.
Furthermore, let the formulas

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

be the left and right introduction rules for �, where the free variables of Bl and Br are in the747

list of variables x̄. The object-level connective � has initial-coherent introduction rules if the748

15Here A is an atomic object level formula.
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sequent ` K∞ : · ⇑ ∀x̄(?∞Bl O ?∞Br) is provable in SELLF, where K∞[∞] = {Init} and749

K∞[i] = ∅ for any other i ∈ I. A canonical proof system theory is called initial-coherent if all750

object-level connectives have initial-coherent introduction rules.751

It is easy to see that determining initial-coherency is simple and that initial coherency752

does not imply cut-coherency (and vice-versa). In general, we take both of these coherence753

properties together.754

Definition 5.13
A cut-coherent theory that is also initial-coherent is called a coherent theory.755

Proposition 5.14
Let X be a coherent theory and � an object-level connective of arity n ≥ 0. Furthermore, let
the formulas

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

be the left and right introduction rules for �. Then Br and Bl are dual formulas in SELLF.756

Proof. From the definition of cut-coherent, Bl entails Br in a theory containing {Cut}. Simi-757

larly, from the definition of initial-coherence, Br entails Bl in a theory containing Init. Thus,758

the equivalence Br ≡ Bl is provable in a theory containing {Cut} and Init. Hence Br and Bl759

are duals.760

Finally, the next theorem states that, in coherent systems, the initial rule can be restricted to761

its atomic version. For this theorem, we need to axiomatize the meta-level predicate atomic(·).762

This axiomatization can be achieved by collecting into the theory ∆ all formulas of the form763

∃x̄ : (atomic(p(x1; :::; xn)))⊥ for every predicate of the object logic.764

For the next theorem, we also need the following definition

AInit = ∃A.Init(A) ⊗ atomic(A)).

Theorem 5.15
Given an object level formula B, let Init(B) denote the formula bBc⊥⊗dBe⊥, let ∆ be the theory765

that axiomatizes the meta-level predicate atomic(·), X ∪ Init be a coherent proof theory and766

K∞ = {X,AInit,∆}. Then the sequent ` K∞ : · ⇑ Init(B) is provable.767

5.3 Invertibility of rules768

Another property that has been studied in the sequent calculus setting is the invertibility of769

rules. We say that a rule is invertible if the provability of the conclusion sequent implies the770

provability of all the premises.771

This property is of interest to proof search since invertible rules permute down with the772

other rules of a proof, reducing hence proof-search non-determinism. In particular, in systems773

with only invertible rules, the bottom-up search for a proof can stop as soon as a non provable774

sequent is reached.775

For example, it is well known that all rules in G3c (see [27]) are invertible. This system776

is specified in Figure 13. Observe that the meta level connectives in the bodies are negative.777

Therefore, its introduction rule is specified using only invertible focused rules. The following778

is a straightforward result, as all the connectives appearing in a monopole are negative.779

Theorem 5.16
A monopole introduction clause corresponds to an invertible object level rule.780
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(⇒ L) bA⇒ Bc⊥ ⊗ ?rdAe& ?lbBc (⇒ R) dA⇒ Be⊥ ⊗ ?lbAc O ?rdBe
(∧L) bA ∧ Bc⊥ ⊗ ?lbAc O ?lbBc (∧R) dA ∧ Be⊥ ⊗ ?rdAe& ?rdBe
(∨R) dA ∨ Be⊥ ⊗ ?rdAe O ?rdBe (∨L) bA ∨ Bc⊥ ⊗ ?lbAc& ?lbBc

Fig. 13. Specification of G3c.

6 Implementation781

We have implemented a tool that takes a SELLF specification of a proof system and checks782

automatically whether the proof system admits cut-elimination and whether the system with783

atomic initials is complete. Our tool is implemented in OCaml. Its source code as well as784

examples can be found at http://code.google.com/p/sellf. The specification of proof785

systems is done as described in Section 3. In particular, the clauses specifying a proof system786

are separated into four parts: introduction clauses, structural clauses, cut clauses, and the787

identity clauses. We have written the specification of all the systems described in Section 4.788

The tool also contains the machinery necessary for checking the conditions described in789

Section 5. It implements the static analysis described in Lemmas 5.2 and 5.4. As detailed at790

the end of Section 5.1, the tool determines cases for when the cut rule can permute over other791

introduction rules and for when an introduction rule permutes over another introduction rule.792

Whenever some clauses of the encoding does not satisfy such criteria, then it outputs an error793

message. Detecting corner cases can be useful for detecting design flaws in the specification794

of a proof system. For the systems G1m and Lax, our tool was able to check that indeed795

a proof with cuts can be transformed into a proof with principal cuts only. For the other796

systems, it identified some permutations by vacuously that it could not prove automatically.797

However, these can be easily checked manually.798

For checking whether an encoding is cut-coherent, our tool performs bounded proof search,799

where the bound is detemined as described in Theorem 5.11. In order to handle the problem of800

context splitting during proof search, our tool implements the lazy splitting detailed in [3] for801

linear logic. The method easily extends to SELLF. Another difference, however, is that our802

system is one-sided classical logic. Therefore, we do not implement the back-chaining style803

proof search used in [3], but rather proof search based on the focused discipline described in804

Section 2. Furthermore, as previously mentioned, proof search is bounded by the height of805

derivations, measured by the number of decide rules. This is enough for checking whether806

an encoding is cut-coherent. In a similar fashion, the tool also checks by using bounded807

proof search whether the encoded proof system is complete when using atomic initial rules808

by checking whether the system is initial coherent (see Definition 5.12). For all the examples809

that we have implemented, our tool checks all the conditions described above in less than a810

second.811

7 Related Work812

The present work has its foundations on the works [20, 16] by Miller, Nigam, and Pimentel,813

where plain linear logic was used as the framework for specifying sequent systems, and814

reasoning about them. The motivation for the generalization proposed here was based initially815

on the fact that there are a number of proof systems that can be encoded SELLF but cannot816

be encoded in the same declarative fashion (such as without mentioning side-formulas) in817

linear logic without subexponentials. Moreover, the encodings in [16] are only on the level of818

proofs and not on the level of derivations [20]. Therefore, proving adequacy in [16] involves819
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more complicated techniques than the simple proofs by induction on the height of focused820

derivations used here. Finally, when trying to deal with the verification using SELLF, we821

ended up being able to propose more general conditions for permutation of clauses, which822

enabled more general criteria for proving cut-elimination of systems.823

It turns out that specification and verification of proof systems is a very important branch of824

the proof theory field. In fact, there exists a number of works willing to provide adequate tools825

for dealing with systems in a general and yet natural way, making it possible then to use the826

rich meta-theory proposed in order to reason about the specifications. For example, Pfenning827

proposed a method of proving cut-elimination [22] from specifications in intuitionistic linear828

logic. This method has been applied to a number of proof systems and implemented by829

using the theorem prover Twelf [23]. For instance, the encoding of Lax logic and its cut-830

elimination proof can be found at http://twelf.org/wiki/Lax_logic. It happens that831

this procedure is only semi-automated, in the sense that, for any given proof system, one832

has to prove all the permutation lemmas and reductions needed in the cut-elimination from833

scratch.834

In the present paper, we adopted a more uniform approach, establishing general criteria835

to the specification for proving properties of the specified systems. Since we are dealing836

with classical linear logic (where negation is involutive), our encodings never mention side-837

formulas, only the principal formulas of the rules. Such declarative specifications produce838

not only clean and natural encodings, but it also allows for easy meta-level reasoning.839

Ciabattoni and Terui in [5] have proposed a general method for extracting cut-free sequent840

calculus proof systems from Hilbert style proof systems. Their method can be used for a841

number of non-trivial logics, including intuitionistic linear logic extended with knotted struc-842

tural rules. However, a main difference to our work is that they do not provide a decision843

criteria for when a system falls into their framework. On the other hand, we do not provide844

means to encode Hilbert style proof systems. It seems that our methods are complementary845

and can be combined, so to enable the specification of Hilbert style proof systems as well846

as reason over them. However, the challenges of integrating these methods have still to be847

investigated.848

Checking whether a rule permutes over another was also topic of the recent work [12].849

As in our approach, Lutovac and Harland investigate syntactic conditions which allow to850

check the validity of such permutations. A number of cases of permutations and examples851

are provided. A main difference to our approach is that we fixed the specification language,852

namely SELLF, to specify inference rules and proof systems, whereas [12] does not make853

such commitment. On one hand, we can only reason about systems “specifiable” in SELLF,854

but on the other hand, the use a logical framework allows for the construction of a general855

tool that can check for permutations automatically. It is not yet clear how one could construct856

a similar tool using the approach in [12].857

8 Conclusions and Future Work858

In this paper, we showed that it is possible to specify a number of non-trivial structural proper-859

ties by using subexponential connectives. In particular, we demonstrated that it is possible to860

specify proof systems whose sequents have multiple contexts that are treated as multisets or861

sets. Moreover, it is possible to specify inference rules that require some formulas to be weak-862

ened and inference rules that require some side-formula to be present in its conclusion. We863

have also introduced the machinery for checking whether encoded proof systems have three864

important properties, namely the admissibility of the cut rule, the completeness of atomic865
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identity rules, and the invertibility of rules. Finally, we have also build an implementation866

that automatically checks some of these criteria.867

There are a number of directions to follow from this work. As argued in the paper, a main868

challenge for determining whether a proof system admits cut-elimination by just checking869

its specification is checking whether a rule permutes over another one. Although we found870

general conditions that apply to many systems, these criteria are static, that is, it is enough871

to just inspect the specification without executing it. It seems possible to check for more872

permutations by performing bounded proof search, similar to what was done for checking the873

cut-coherence property. In particular, we are investigating how to use existing propositional874

solvers together with bounded proof search to perform this check automatically.875

Another future direction is of investigating the role of the polarity of atomic meta-level876

formulas in the specification of proof systems using SELLF. [20] showed in a linear logic877

setting that a number of proof systems can be faithfully encoded by playing with the polarity878

of atomic formulas. Here, we assigned to all atomic formulas a negative polarity, but this879

choice is not enforced by the completeness of the focusing strategy (see [17]). In fact, a dif-880

ferent (global) assignment for atoms could be chosen. However, to use such a technique here881

would imply a change on the definition of bipoles, as with the current definition polarities882

would play a very limited role because all atomic formulas are in the scope of a subexpo-883

nential question-mark. We are investigating alternative definitions, so that we can still use884

subexponentials in a sensible way and at the same time play with the polarity of atomic for-885

mulas.886
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